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ABSTRACT

The pro-isomorphic zeta function of a finitely generated nilpotent group

is a Dirichlet generating series that enumerates all finite-index subgroups

whose profinite completion is isomorphic to that of the ambient group. We

study the pro-isomorphic zeta functions of Q-indecomposable D∗-groups of
even Hirsch length. These groups are building blocks of finitely generated

class-two nilpotent groups with rank-two centre, up to commensurability.

Due to a classification by Grunewald and Segal, they are parameterised

by primary polynomials whose companion matrices define commutator re-

lations for an explicit presentation. For Grunewald–Segal representatives

of even Hirsch length of type f(t) = tm, we give a complete description

of the algebraic automorphism groups of associated Lie lattices. Utilis-

ing the automorphism groups, we determine the local pro-isomorphic zeta

functions of groups associated to t2 and t3. In both cases, the local zeta

functions are uniform in the prime p and satisfy functional equations.

The functional equations for these groups, not predicted by the currently

available theory, prompt us to formulate a conjecture which prescribes,

in particular, information about the symmetry factor appearing in local

functional equations for pro-isomorphic zeta functions of nilpotent groups.

Our description of the local zeta functions also yields information about

the analytic properties of the corresponding global pro-isomorphic zeta

functions. Some of our results for the D∗-groups associated to t2 and t3

generalise to two infinite families of class-two nilpotent groups that result

naturally from the initial groups via ‘base extensions’.

1. Introduction

1.1. Setting the scene. Zeta functions of groups and rings were introduced

by Grunewald, Segal and Smith [19] as an effective means for studying subgroup

growth. Since their inception in the late 1980s, much progress has been made

regarding their analytic and arithmetic properties; see for instance [13, 37].

In this paper we focus on pro-isomorphic zeta functions. Let Γ be a finitely

generated nilpotent group and let a∧n(Γ) denote the number of subgroups Δ ≤ Γ

satisfying |Γ : Δ| = n and Δ̂ ∼= Γ̂, where Ĥ denotes the profinite completion of a

group H . The pro-isomorphic zeta function of Γ is the Dirichlet generating

series

ζ∧Γ (s) =
∞∑
n=1

a∧n(Γ)n
−s (s ∈ C).



Vol. 269, 2025 PRO-ISOMORPHIC ZETA FUNCTIONS 619

As with subgroup and normal subgroup zeta functions, an immediate con-

sequence of nilpotency is that the pro-isomorphic zeta function has an Euler

product decomposition over all rational primes:

(1.1) ζ∧Γ (s) =
∏
p

ζ∧Γ,p(s), where ζ∧Γ,p(s) =
∞∑
k=0

a∧pk(Γ) p
−ks

is called the local zeta function at a prime p and is known to be a rational

function in p−s over Q; see [19].

A special feature of pro-isomorphic zeta functions, in contrast to other related

zeta functions of groups, is that the local zeta functions can be expressed rather

naturally as p-adic integrals over algebraic groups taking the form

(1.2) Z(G, p)(s) =

∫
G+

p

|det(g)| sp dμp(g).

Here G ≤ GLd is an affine Z-group scheme (the algebraic automorphism group

Aut(L) of an associated nilpotent Lie lattice L), μp denotes a suitably nor-

malised Haar measure on the locally compact p-adic group Gp = G(Qp),

and G+
p = Gp ∩ Md(Zp) is a compact open subset of Gp; the precise details

are described in Section 3.

Integrals such as (1.2) have a long history and were studied for various clas-

sical groups by Hey, Weil, Tamagawa, Igusa and others [20, 39, 33, 23]; for a

more detailed account see [14]. Grunewald, Segal and Smith [19] discovered

the relevance of such integrals for the study of pro-isomorphic zeta functions.

Subsequently, du Sautoy and Lubotzky [14] advanced the general theory of in-

tegrals of the form (1.2) by considering non-reductive groups G; an essential

aspect of their work was to carry out a reduction of the integral, subject to

certain technical assumptions, to an integral over a reductive subgroup.

It is remarkable that in many cases (e.g., when the algebraic group G is

irreducibly reductive and split over Q) the zeta functions Zp(s) = Z(G, p)(s)

are given by a single rational function in p, p−s and display a symmetry upon

inversion of the prime, for almost all primes p:

Zp(s)p→p−1 = (−1)jpa−bsZp(s) for suitable a, b, j ∈ N0.

Constructions using base extensions lead to slightly more general situations,

where the zeta functions are finitely uniform and a corresponding finite vari-

ation a = a(p), b = b(p) with p is observed; compare with [19, Thm. 4], [14,

§3] and [8]. In these contexts the functional equation is a manifestation of the
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compatibility of the integral with the p-adic Bruhat decomposition and sym-

metries related to the affine Weyl group of the reductive group G; see [23, 14].

Such a phenomenon should be compared with the symmetries conjectured by

Igusa and proved by Denef and Meuser [10] for integrals over Z d
p of integral

homogeneous polynomials, based on the principalisation of ideals and the Weil

conjectures. More general results in this direction, with group-theoretic applica-

tions, were discovered and proved by Voll [36]. Since then functional equations

of the kind discussed have been recognised as a widespread, but not universal

feature of zeta functions associated to groups, rings and modules; for instance,

see [1, 32, 29, 38, 25, 15, 5].

1.2. Main results and a conjecture. The motivations for the present pa-

per are two-fold. Firstly, we wish to explore pro-isomorphic zeta functions

of nilpotent groups in situations where a crucial standard assumption, origi-

nally introduced in [14] and until now widely used to study integrals of the

form (1.2), does not hold. For this purpose, we consider finitely generated

torsion-free class-two nilpotent groups with rank-two centres; we refer to such

groups as D∗-groups. An explicit example from this family is studied in depth

in this paper, pertaining to the D∗-group Γt3 of Hirsch length 8, associated to

the primary polynomial t3; see Theorem 1.3 below and the following discussion.

Our analysis relies in the first place on pinning down the automorphism group

of Γt3 . More generally, we extend the computation, initiated in [6], of the au-

tomorphism groups of Grunewald–Segal representatives of Q-indecomposable

D∗-groups, up to commensurability; see Theorem 1.10. In addition to its in-

herent interest, our description of the automorphism groups provides a first

essential step toward studying the pro-isomorphic zeta functions of more com-

plicated D∗-groups; we extend our description of the relevant automorphism

groups further in [7]. Indeed, after our original work was finished, Moadim Les-

imcha and Schein [28] went ahead and studied other families of D∗-groups; they
produced a combinatorial description of local pro-isomorphic zeta functions and

derived local functional equations for the families that they considered. Sec-

ondly, we wish to establish a conjectural framework for the shape that local

functional equations take in the context of pro-isomorphic zeta functions of

nilpotent groups, when they occur; see Conjecture 1.8.

We now provide more details. In [18, §6], Grunewald and Segal considered

D∗-groups, that is, torsion-free radicable class-two nilpotent groups of finite
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rank with rank-two centres. They classified the indecomposable constituents

of such groups, by giving a parametrisation in terms of the rank and—in even

rank—an extra datum, namely the projective equivalence class of an associated

binary form over Q. Each D∗-group is the radicable hull of a D∗-group, de-
termined up to commensurability. We refer to such ‘integral representatives’ of

indecomposable D∗-groups as Q-indecomposable D∗-groups.
In [18, Thm. 6.3], Grunewald and Segal effectively gave explicit presenta-

tions for certain Q-indecomposable D∗-groups, which cover all such groups

up to commensurability. For convenience, we refer to these special groups as

Grunewald–Segal representatives. In passing, we remark that the local normal

subgroup zeta functions of such Grunewald–Segal representatives were com-

puted in [35, §3.2]. The automorphism groups of Grunewald–Segal represen-

tatives for Q-indecomposable D∗-groups of odd Hirsch length were determined

in [6]. In the current paper we consider Grunewald–Segal representatives for

Q-indecomposable D∗-groups of even Hirsch length; these are defined explic-

itly in Section 2. We are particularly interested in a subfamily of D∗-groups
Γtm , m ∈ N, given by the presentations

(1.3)

Γtm =〈x1, . . . , xm,y1, . . . , ym, z1, z2 |
[xi, yi] = z1 for 1 ≤ i ≤ m,

[xj , yj+1] = z2 for 1 ≤ j < m,

[xi, yj ] = 1 for 1 ≤ i, j ≤ m with j − i �∈ {0, 1},
[xi, xj ]=[yi, yj ]=[xi, z1]=[xi, z2]=[yi, z1]=[yi, z2]=1

for 1≤ i, j≤m〉.

Observe that Γtm has Hirsch length 2m+2 and rank-two centre Z(Γtm)=〈z1, z2〉.
For m=1, the presentation yields the decomposable D∗-group

Γt
∼= C∞ ×Heis(Z),

the direct product of an infinite cyclic group and the discrete Heisenberg group.

Its pro-isomorphic zeta function is relatively easy to compute:

ζ∧Γt
(s) = ζ(s− 2)ζ(2s− 3)ζ(2s− 4)

is a product of shifted Riemann zeta functions; this case was already treated

in [3, §3.3.4] and we confirm the result in Example 3.8.
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For m ≥ 2, the groups Γtm constitute one basic family of Grunewald–Segal

representatives for Q-indecomposable D∗-groups. In Theorem 1.10 below we

provide, for all m ∈ N, a complete description of the algebraic automorphism

groups of associated Lie lattices. Based on this result, we explicitly determine

for m ∈ {2, 3} the corresponding pro-isomorphic zeta functions, including all

local zeta functions with no exceptions.

Theorem 1.1: For all primes p, the D∗-group Γ = Γt2 satisfies

ζ∧Γ,p(s) =Wt2(p, p
−s),

where

Wt2(X,Y ) =
1 +X10Y 4

(1 −X8Y 3)(1 −X11Y 4)(1 −X12Y 5)
.

Thus ζ∧Γ,p(s) has abscissa of convergence 11/4 and satisfies the functional equa-

tion

ζ∧Γ,p(s)|p→p−1 = (−1)p21−8s ζ∧Γ,p(s).

Corollary 1.2: The pro-isomorphic zeta function of the D∗-group Γ = Γt2 is

ζ∧Γ (s) =
ζ(3s− 8)ζ(4s− 11)ζ(5s− 12)ζ(4s− 10)

ζ(8s− 20)
,

where ζ(s) denotes the Riemann zeta function; in particular, it admits meromor-

phic continuation to the entire complex plane and has abscissa of convergence 3,

with a double pole at s = 3.

Furthermore, the asymptotic growth of pro-isomorphic subgroups in Γ is

given by

(1.4)
N∑

n=1

a∧n(Γ) ∼ ct2N
3 logN as N → ∞,

where

ct2 =
5 ζ(3)

12π2
≈ 0.050747.

Theorem 1.1 and its proof resemble similar results for other nilpotent groups,

for instance the D∗-groups studied in [6]. In contrast, the next theorem and its

proof open up several promising new directions for further exploration.

Theorem 1.3: For all primes p, the D∗-group Γ = Γt3 satisfies

ζ∧Γ,p(s) =Wt3(p, p
−s),
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where

Wt3(X,Y )=(1−X29Y 10)

×(1+X14Y 5−X15Y 5+X30Y 10−X59Y 21+X74Y 26−X75Y 26−X89Y 31)

(1 −X15Y 5)2(1−X29Y 9)(1−X30Y 11)(1−X61Y 21)
.

Thus ζ∧Γ,p(s) has abscissa of convergence 29/9 and satisfies the functional equa-

tion

ζ∧Γ,p(s)|p→p−1 = (−1)p32−10s ζ∧Γ,p(s).

Corollary 1.4: The pro-isomorphic zeta function of the D∗-group Γ = Γt3

has abscissa of convergence 10/3 and admits meromorphic continuation to

{s ∈ C | Re(s) > 3} via

ζ∧Γ (s)=
ζ(5s−15)ζ(9s−29)ζ(10s− 30)ζ(11s− 30)ζ(15s− 45)ζ(21s− 61)

ζ(10s− 29)ζ(30s− 90)
ψ̃(s),

where ζ(s) denotes the Riemann zeta function and

ψ̃(s) =
∏
p

W̃ (p, p−s)

1− p15−5s + p30−10s

for

W̃ (X,Y )=1+X14Y 5−X15Y 5+X30Y 10−X59Y 21+X74Y 26−X75Y 26−X89Y 31;

moreover, the line {s ∈ C | Re(s) = 3} is a natural boundary. In particular, the

zeta function ζ∧Γ (s) has a simple pole at s = 10/3.

Remark 1.5: Similar to Corollary 1.2, the asymptotic growth of pro-isomorphic

subgroups in Γ = Γt3 can be described by means of a suitable Tauberian theo-

rem:
N∑

n=1

a∧n(Γ) ∼ ct3N
10/3 as N → ∞,

where

ct3 =
ζ(5/3) ζ(10/3) ζ(20/3) ζ(5) ζ(9) ψ̃(10/3)

30 ζ(13/3) ζ(10)
∈ R>0

is somewhat unwieldy.
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Following a suggestion of the referee, in Section 7 we extend our results for the

Q-indecomposableD∗-groups Γt2 and Γt3 to two infinite families, Γ̃t2,k and Γ̃t3,k

of class-two nilpotent groups, where k runs through all number fields. These

families of groups result naturally from the initial groups via ‘base extensions’

of corresponding Lie lattices, and pro-isomorphic zeta functions of groups con-

structed in this way were systematically investigated in [8]. For completeness

we also discuss the family Γ̃t,k associated to the decomposable D∗-group Γt. We

state here the generalisation of Corollary 1.2; further details about the set-up

and generalisations of some of our other results can be found in Section 7.

Theorem 1.6: Let k be a number field of absolute degree d = [k : Q], with

ring of integers o. Let Γ̃ = Γ̃t2,k be the class-two nilpotent group of Hirsch

length 6d and with rank-2d centre, corresponding to the class-two nilpotent Z-

Lie lattice L̃ = L̃t2,k which results from the Lie lattice L = Lt2 associated to

the group Γt2 by extension of scalars from Z to o and subsequent restriction of

scalars back to Z.

Then the pro-isomorphic zeta function of the group Γ̃ is

(1.5) ζ∧
˜Γ
(s)=

ζk(3s−(4d+4))ζk(4s−(8d+3))ζk(5s−12d)ζk(4s−(8d+2))

ζk(8s− (16d+ 4))
,

where ζk(s) denotes the Dedekind zeta function of k; in particular, it admits

meromorphic continuation to the entire complex plane.

Remark 1.7: For k = Q, i.e., d = 1, we recover Corollary 1.2. For quadratic

fields k, i.e., d = 2, the abscissa of convergence is 5, with a double pole at s = 5.

For number fields k of absolute degree d ≥ 3, the abscissa of convergence

is (12d+1)/5, with a simple pole at s = (12d+1)/5. Similar to Corollary 1.2, the

asymptotic growth of pro-isomorphic subgroups in Γ̃ can be described by means

of a suitable Tauberian theorem. Via the Euler product, the formula (1.5) in-

corporates a description of the local pro-isomorphic zeta functions ζ∧
˜Γ,p

(s) for all

primes p and thus also yields a generalisation of Theorem 1.1. Indeed, for d ≥ 2

the zeta function ζ∧
˜Γ,p

(s) has abscissa of convergence 12d/5 and, if p is unrami-

fied in k, it satisfies the functional equation

ζ∧
˜Γ,p

(s)|p→p−1 = ±p16d2+5d−8ds ζ∧
˜Γ,p

(s).
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Theorem 1.3 and its proof extend the scope of functional equations and the

complexity of the integrals arising in the context of pro-isomorphic zeta func-

tions of class-two nilpotent groups. As alluded to above, and demonstrated in

Remark 5.6 below, it is the first explicitly computed pro-isomorphic zeta func-

tion for which a certain lifting condition [14, Assumption 2.3] does not hold.

Furthermore, it involves a technically challenging computation of an integral

with non-multiplicative integrand which requires careful analysis by certain

number-theoretic and combinatorial techniques. In particular, one needs to

count solutions to congruence equations of the form pαx2 + pβyz ≡ 0 mod pn;

see Section 5. This reveals a new phenomenon in the setting of pro-isomorphic

zeta functions, namely the prominent role played by counting points on reduc-

tions of varieties; previously this feature was encountered only for other types

of zeta functions of nilpotent groups, such as subgroup and normal subgroup

zeta functions; compare with [12, 11, 36]. Our analysis of the structure of the

automorphism groups of Q-indecomposable D∗-groups of even Hirsch length

given in Section 2 suggests that this is only the tip of the iceberg, and should

be contrasted with the linearity assumption in [14, §5].
The available theory on integrals of the form (1.2), which occupy a central role

in our computation, could not be used to predict a priori the resulting form of

the local pro-isomorphic zeta function in any sense. It is thus somewhat of a sur-

prise that the zeta functions in Theorem 1.3 satisfy local functional equations.

In contrast to the situation for Q-indecomposable D∗-groups of odd Hirsch

length [6], the values of the abscissae of convergence—for the pro-isomorphic

zeta functions of Q-indecomposable D∗-groups of even Hirsch length—remain

elusive. More work is required, even to produce a promising conjecture for the

family of groups Γtm , m ∈ N≥2.

In order to compare the local functional equations in Theorems 1.1, 1.3 and

their generalisations with data for other groups, we briefly recall further con-

cepts. To a finitely generated torsion-free class-c nilpotent group Γ of Hirsch

length d one associates, via Lie theory, a class-c nilpotent Z-Lie lattice L of

Z-rank d, whose local zeta functions

ζ∧L,p(s) = ζ isoLp
(s) =

∞∑
k=0

aisopk (Lp)p
−ks

satisfy

ζ∧Γ,p(s) = ζ∧L,p(s)
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for almost all primes p; here Lp = Zp ⊗Z L denotes the p-adic completion

of L, and aisopk (Lp) is the number of Lie sublattices of Lp of index pk which are

isomorphic to Lp. It was shown in [19] that each local zeta function ζ∧L,p(s) is a

rational function in p−s overQ, i.e., ζ∧L,p(s) =Wp(p
−s) for suitableWp = Rp/Qp

with Rp, Qp ∈ Q[Y ]. We then define the degree of a local pro-isomorphic zeta

function, denoted by degp−s ζ∧L,p(s), to be the degree of the rational functionWp,

viz.

degWp = degY Rp − degY Qp.

The family of local zeta functions ζ∧L,p(s) is said to be finitely uniform if there

exist finitely many rational functions W1, . . . ,Wr ∈ Q(X,Y ) in two variables

such that, for each prime p, there is an index i = i(p) for which

ζ∧L,p(s) =Wp(p
−s) = Wi(p, p

−s).

Another ingredient relates to the nilpotent Z-Lie lattice L itself: recall that L

is N-graded if it is equipped with an additive decomposition L =
⊕

i∈N L(i)

such that [L(i), L(j)] ⊆ L(i+j) for all i, j ∈ N; for short, we refer to the latter

as a grading on L. Since L has finite rank as a Z-module, there exists, for

a given grading, a minimal l ∈ N0 such that L(j) = 0 for j > l; the grading

then gives rise to a descending filtration L = L(1) ⊇ L(2) ⊇ · · · ⊇ L(l) ⊇ {0}
of L by Lie sublattices L(i) =

∑l
j=i L(j) ⊇ γi(L). We call a grading natural if

its associated filtration is precisely the lower central series, i.e., if L(i) = γi(L)

for 1 ≤ i ≤ l and l = c is the nilpotency class of L. To a grading on L as above

we attach a weight given by

l∑
i=1

i rkZ L(i) =

l∑
i=1

rkZ L(i),

and we call a grading minimal if its weight is minimal amongst all weights of

gradings on L. In passing, we mention that not all nilpotent Lie lattices admit

a grading. For instance, Dyer [16] constructed a 9-dimensional class-6 nilpotent

Lie algebra over Q whose algebraic automorphism group is unipotent. This

implies that the Lie algebra does not possess any grading, since every non-zero

graded Lie algebra admits non-trivial semisimple automorphisms; clearly, no

Lie lattice in such a Lie algebra can possess a grading.
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Conjecture 1.8: Let L be a nilpotent Z-Lie lattice that admits at least one

grading. Then, for almost all primes p, the degree of the local pro-isomorphic

zeta function of L at p is equal to the weight of a minimal grading of L.

In particular, if the family of local pro-isomorphic zeta functions ζ∧L,p(s) is

finitely uniform and the local zeta functions satisfy, for almost all primes p,

functional equations of the form

ζ∧L,p(s)|p→p−1 =(−1)jpa−bsζ∧L,p(s) for suitable a=a(p), b=b(p), j=j(p)∈N0,

then the integer b in the ‘symmetry factor’ is the same for almost all p and is

given by the weight of a minimal grading of L.

Remark 1.9: Note that natural gradings, when they exist, are minimal. It

follows that, if a class-c nilpotent Lie lattice L is naturally graded, then—in

accordance with the conjecture—we expect that

degp−s ζ∧L,p(s) =

c∑
j=1

rkZ γj(L)

for almost all primes p. It is curious that this expression already has an in-

terpretation in asymptotic group theory: it provides the degree of polynomial

word growth of finitely generated nilpotent groups Γ giving rise to L via Lie

theory; see [2]. In particular, every class-two nilpotent Lie lattice L is naturally

graded and thus we expect that the degrees satisfy

degp−s ζ∧L,p(s) = rkZ L+ rkZ[L,L]

for almost all primes p.

In spirit, Conjecture 1.8 is similar to part of a conjecture of Voll on submodule

zeta functions [38, Conj. 1.11], but the conjectures involve different types of

filtrations (which can be seen already for the group Γt, arising from (1.3) for

m = 1) and as yet there is no direct link between the two. We have tested

Conjecture 1.8 comprehensively for all nilpotent Z-Lie lattices L for which the

local pro-isomorphic zeta functions are known; this list includes many naturally

graded Lie lattices as well as some Lie lattices not possessing a natural grading;

we refer to [19, 3, 6, 8, 28] for descriptions of relevant nilpotent Z-Lie lattices and

their pro-isomorphic zeta functions. The current paper provides two new infinite

families of groups confirming the conjecture: the integers b in the symmetry

factors of the local zeta functions described in Remarks 1.7 and 7.6 indeed match

the sum of the ranks of terms of the lower central series: for the ‘base extensions’

defined in Theorems 1.6 and 7.5 one has 8d = 6d+2d and 10d = 8d+2d for all

primes unramified in the extension.
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Our conjecture also holds true for a Z-Lie lattice L, constructed by Berman

and Klopsch in [5], with the property that its local pro-isomorphic zeta func-

tions ζ∧L,p(s) do not satisfy functional equations for p > 3. The relevant Lie

lattice L is not naturally graded, but admits a minimal grading of weight 102;

and, indeed, the local zeta functions are uniform in p, for p > 3, of degree 102.

This example can also be generalised by means of base extensions; see [8].

It is well known and easy to see that there is a link between the existence of

gradings of a Z-Lie lattice L and the occurrence of diagonalisable elements in

the algebraic automorphism group Aut(L) of L. Conjecture 1.8 suggests that

there is a somewhat more delicate connection (yet to be discovered) between

minimal gradings of a nilpotent Z-Lie lattice L and the degrees of its local pro-

isomorphic zeta functions, which stand in close relation to Aut(L) as indicated

in (1.2).

In order to carry out the computations leading to Theorems 1.1 and 1.3 and

their generalisations we require a structural description of the relevant auto-

morphism groups. In fact, we determine the algebraic automorphism groups for

the Lie lattices associated to Grunewald–Segal representatives of Q-indecompo-

sable D∗-groups of even Hirsch length associated to the primary polynomials

Δ(t)= tm, for all m ∈ N; as in the case of odd Hirsch length [6], this structure

theorem for the algebraic automorphism groups is of independent interest. The

presentation (1.3) for the group Γtm readily translates into a description (2.2)

of the corresponding Lie lattice; compare with Section 3.1.

Theorem 1.10: For m ∈ N, let G ≤ GL2m+2 be the algebraic automorphism

group of the Z-Lie lattice (scheme) L associated, via (2.2) below, to the primary

polynomial Δ(t) = tm. Let G0 � G be the affine subgroup consisting of all

automorphisms that fix pointwise the centre of L. Then G splits as

G ∼= B2 �G0,

where, for every field extension k of Q, the groupB2(k) is the group of invertible

lower-triangular 2× 2 matrices, and

G0(k) ∼= SL2(R)� Vst(R)
⊕2, for R = k[t]/(tm) and Vst(R) = R2,

with respect to the standard left action. In particular, the algebraic group G

is connected.
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Remark 1.11: In fact, the description of G0 given in Theorem 1.10 holds true

more generally, for Z-Lie lattices corresponding to arbitrary primary polyno-

mials; see Theorem 2.3 below. The description of the quotient of G by G0,

however, becomes more involved; see [7].

The proof of Theorem 1.10, along with explicit forms of the automorphism

groups, is given in Section 2. Our considerations in this context overlap some-

what with the treatment in [9]. In [7] we give a complete description of the

algebraic automorphism groups of all Z-Lie lattices associated to Grunewald–

Segal representatives of Q-indecomposable D∗-groups of even Hirsch length,

based on a more technical analysis of the Lie algebras associated to (subgroups

of) the algebraic automorphism groups.

1.3. Layout of the paper. In Section 2 we analyse and describe the al-

gebraic automorphism groups of Z-Lie lattices associated to indecomposable

D∗-groups of even Hirsch length, corresponding to primary polynomials of the

form Δ(t) = tm. In Section 3 we provide technical background regarding con-

ditions on the algebraic automorphism group of a Lie ring that is needed for

calculating pro-isomorphic zeta functions of groups. In Sections 4 and 5 we

present calculations of the local pro-isomorphic zeta functions of the groups Γt2

and Γt3 . The former group can be dealt with in a quite straightforward man-

ner, while the latter group is considerably more difficult to handle. From the

description of the local zeta functions we draw conclusions about the analytic

behaviour of the global pro-isomorphic zeta functions of Γt2 and Γt3 ; again

the treatment of the latter group, which forms Section 6, is more challenging

and displays interesting features. In Section 7 we extend our results for the

groups Γt2 and Γt3 to two infinite families of class-two nilpotent groups that

result via ‘base extensions’ of corresponding Lie lattices.

1.4. Basic notation. We denote by N0 and N the non-negative and positive

integers, respectively. For S ⊆ R and a ∈ R we write S≥a = {x ∈ S | x ≥ a},
and similarly for S>a. For a prime p, we write Qp for the field of p-adic numbers

with Zp its ring of integers. We denote the p-adic valuation of x ∈ Qp by vp(x)

and write |x|p = p−vp(x) for the p-adic absolute value. A Lie lattice over a

commutative ring R with 1 is a finitely generated free R-module, equipped with

a suitable Lie bracket.
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2. Automorphism groups of Q-indecomposable D∗-Lie lattices

For any commutative ring R with 1 and any free Z-module M , we use the

notation RM = R⊗Z M to denote the free R-module obtained by extension of

scalars; if M carries extra algebraic structure that is compatible with extension

of scalars, such as the structure of a Lie lattice, we employ the same notation.

Thus a Z-Lie lattice L sets up a Lie lattice scheme R � RL. We realise the

algebraic automorphism group Aut(L) of L, via a Z-basis of L, as an affine

Z-group scheme G ≤ GLd, where d = dimZ(L) is the Z-rank of L, so that, in

particular,

Aut(kL) ∼= G(k) ≤ GLd(k) for every extension field k of Q,

and, thinking of GLd as a subgroup of SLd+1 to make the arithmetic structure

tangible,

Aut(L) ∼= G(Z) and Aut(ZpL)
∼= G(Zp) for each prime p,

with respect to the chosen basis. The automorphism groups arising in this paper

come from nilpotent Z-Lie lattices with rank-two centres and, for short, we refer

to these as D∗-Lie lattices. Our aim here is to describe the algebraic automor-

phism groups of Q-indecomposable D∗-Lie lattices of even Z-rank d = 2m+ 2

which admit a presentation suggested by [18, Thm. 6.3(b)] and associated with

the primary polynomial Δ(t) = tm; compare with Section 3.1. The correspond-

ing task for D∗-Lie lattices of odd Z-rank has been carried out in [6]; the case

of more general D∗-Lie lattices of even Z-rank is considered in [7] (and turns

out to be more involved).
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We now give a detailed description, in coordinates, that is tailored also to

our investigations of pro-isomorphic zeta functions. Let m ∈ N and consider

the companion matrix

(2.1) K = C(a1, . . . , am) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

am am−1 am−2 · · · a1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Mm(Z)

of a monic polynomial

ΔK = tm − a1t
m−1 − · · · − am−1t− am ∈ Z[t].

We consider the Z-Lie lattice L of Z-rank 2m+ 2 with ordered Z-basis

S = (x1, . . . , xm, y1, . . . , ym, z1, z2)

and the Lie bracket defined by

(2.2)

[xi, yj] = δi,jz1 +Kijz2,

[xi, xj ] = [yi, yj] = [xi, z1] = [xi, z2] = [yi, z1] = [yi, z2] = 0,

for 1 ≤ i, j ≤ m,

where δi,j denotes the Kronecker-delta. We observe that L is a D∗-Lie lattice

with centre

Z = Z(L) = Zz1 + Zz2.

Let G ≤ GL2m+2 be the algebraic automorphism group of L with the embed-

ding defined by the ordered basis S. In particular, for every integral domain k

of characteristic 0, the coordinate maps with respect to S identify kL with the

module k2m+2 of row-vectors, and the action of the group

G(k) = Aut(kL) ≤ GL2m+2(k)

on kL corresponds to matrix multiplication from the right. We write G0 � G

for the affine subgroup and Z-subscheme arising as the kernel of the natural

restriction homomorphism

(2.3) G0(k) = Ker(G(k)
ResLZ−−−→ GL(kZ)).

From now on without further reference, let k denote an integral domain of

characteristic 0. Recall that an n × n matrix over k is regular (or cyclic)

over k, if it is similar over k to a companion matrix; such a matrix yields a
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regular element of the Lie lattice gln(k), i.e., an element whose centraliser has

the smallest possible rank n. The fact that the matrix K is regular plays a

central role in the elucidation of G, and it is convenient to note down two

elementary facts.

Remark 2.1: Let X,Y ∈ Mn(k) be regular n× n matrices over k. Then:

(1) The centraliser of X is the polynomial algebra that it generates:

CMn(k)(X) = k[X ].

(2) If X and Y have the same characteristic polynomial, then X and Y are

similar over k.

The Lie bracket of kL induces an anti-symmetric bilinear map

(2.4) [·, ·] : kL/kZ × kL/kZ −→ kZ

with values in kZ which, by a slight abuse of notation, we continue to denote

by [·, ·]. The structure of G(k) is tightly connected with the symmetries of two

k-valued bilinear forms on the free module k2m ∼= kL/kZ that can be derived

from the map described in (2.4). For any matrix Q ∈ Mm(Z), the matrix

JQ =

(
0 Q

−Q	 0

)
∈ M2m(Z)

can be regarded as the structure matrix of an anti-symmetric bilinear form

〈·, ·〉JQ on k2m. Let OJQ ≤ GL2m be the affine Z-group scheme such that OJQ(k)

consists of all elements of GL2m(k) that preserve the form 〈·, ·〉JQ , that is,

OJQ(k) = {g ∈ GL2m(k) | g JQ g	 = JQ}.
We remark that, if Q = Im is the identity matrix, the group scheme OJIm

is

simply the classical symplectic group Sp2m.

2.1. The structure of the algebraic subgroup G0. We start with

the structure of G0 � G, the algebraic subgroup and Z-subscheme, whose

group of k-points G(k) fixes the centre kZ = Z(kL) pointwise. An element

g ∈ G(k) ≤ GL2m+2(k) can be written as a block matrix

(2.5)
g =

(
X U

0 Y

)
,

with X=(A B
C D )∈GL2(Mm(k)), Y =( a b

c d )∈GL2(k), U ∈M2m,2(k),
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where X and Y correspond to the automorphisms that g induces naturally

on kL/kZ and kZ. Each of the following equivalent conditions characterises

elements of G(k) among arbitrary elements g of the form (2.5):

[u, v]g = [ug, vg] for all u, v ∈ kL;

[ū, v̄]Y = [ūX, v̄X ] for all ū, v̄ ∈ kL/kZ;

(2.6) aJIm + cJK = XJImX
	 and bJIm + dJK = XJKX

	.

From (2.6) we directly obtain a characterisation of G(k).

Proposition 2.2: Let g ∈ GL2m+2(k) be a block matrix of the form (2.5).

Then:

(1) g ∈ G(k) if and only if the following four conditions are satisfied:

(i) BA	 = AB	 and BK	A	 = AKB	,
(ii) CD	 = DC	 and CKD	 = DK	C	,
(iii) aIm + cK = AD	 −BC	,
(iv) bIm + dK = AKD	 −BK	C	.

(2) g ∈ G0(k) if and only if Y = I2 and X ∈ OJIm
(k)∩OJK (k), or explicitly:

( a b
c d ) = I2 and

(i) BA	 = AB	 and BK	A	 = AKB	,
(ii) CD	 = DC	 and CKD	 = DK	C	,
(iii)0 Im = AD	 −BC	,
(iv)0 K = AKD	 −BK	C	.

The proof of the following key theorem was inspired by a more technical

analysis of the Lie algebras associated to subgroups of G, carried out in [7], and

by-passes the use of Lie algebras by means of a computational trick.

Theorem 2.3: The affine group scheme G0 splits as follows:

G0(k) ∼= SL2(k[K])� Vst(k[K])⊕2,

where Vst(·) denotes the standard left SL2(·)-module.

Proof. Recall that every square matrix over a field is similar to its transpose

and that the conjugating matrix may be taken to be symmetric. In fact, for

regular matrices it is always symmetric; compare with [34]. Therefore, there

exists a symmetric matrix σ ∈ GLm(Q) such that K	 = σKσ−1. In our special

situation, we can even arrange that σ ∈ GLm(Z), because the factor groups Zm
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modulo the row-span ofK and Zm modulo the column-span ofK are isomorphic

(cyclic) groups. We set

(2.7) Σ =

(
Im

σ

)
∈ GL2m(Z), where K	 = σKσ−1,

and claim that for every g ∈ GL2m+2(k) of the form (2.5), with Y = ( a b
c d ) = I2,

the following holds:

(2.8) g ∈ G0(k) if and only if Σ−1XΣ ∈ SL2(k[K]).

First suppose that g ∈ G0(k). By Proposition 2.2 (2), this implies that

X = (A B
C D ) ∈ GL2(Mm(k)) satisfies conditions (i)–(iv)0. From (i), (ii), (iii)0

and (iii)
	
0 —the transpose of (iii)0—we obtain

(2.9)

(
A B

C D

)−1

=

(
D	 −B	

−C	 A	

)
.

Now, using the fact that the inverse g−1 ∈ G0(k) satisfies a similar set of

equations, we get

(i)′ B	D = D	B and B	K	D = D	KB,

(ii)′ C	A = A	C and C	KA = A	K	C,
(iii)′0 Im = D	A−B	C,
(iv)′0 K = D	KA−B	K	C.

Using these additional conditions we deduce that

(2.10) AK = KA, KB = BK	, CK = K	C, K	D = DK	.

Indeed, multiplying (iv)′0 by A on the left gives

AK = AD	KA−AB	K	C
(iii)0
= (Im +BC	)KA−AB	K	C

(ii)′
= KA+BA	K	C −AB	K	C

(i)
= KA;

multiplying (iv)′0 by B	 on the right gives

KB	 = D	KAB	 −B	K	CB	 (iii)�0= D	KAB	 −B	K	(DA	 − Im)

(i)
= D	KBA	 −B	K	DA	 +B	K	 (i)′

= B	K	;
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multiplying (iv)′0 by C on the left gives

CK = CD	KA− CB	K	C
(iii)�0= CD	KA− (DA	 − Im)K	C

(ii)
= DC	KA−DA	K	C +K	C

(ii)′
= K	C;

and multiplying (iv)′0 by D	 on the right gives

KD	 = D	KAD	 −B	K	CD	 (iii)0
= D	K(Im +BC	)−B	K	CD	

(ii)
= D	K +D	KBC	 −B	K	DC	 (i)′

= D	K.

Recalling the definition of Σ in (2.7) and rewriting the relations (2.10), we

get
AK = KA, K(Bσ) = (Bσ)K,

(σ−1C)K = K(σ−1C), (σ−1Dσ)K = K(σ−1Dσ).

By Remark 2.1, this implies that A,Bσ, σ−1C, σ−1Dσ ∈ k[K], that is,

Σ−1XΣ =

(
A Bσ

σ−1C σ−1Dσ

)
∈ GL2(k[K]).

FromBσ, σ−1C ∈ k[K] and the symmetry of σ, one readily obtains that B,C are

symmetric. From (iii)0 and σ−1Dσ = D	 we obtain that Σ−1XΣ ∈ SL2(k[K]).

Conversely, suppose that(
A Bσ

σ−1C σ−1Dσ

)
= Σ−1XΣ ∈ SL2(k[K]).

It suffices to check the conditions (i)–(iv)0 in Proposition 2.2 (2). This can be

done by routine computations, using K	 = σKσ−1 and the fact that k[K] is

commutative. For instance, from σ−1Dσ, σ−1C ∈ k[K] and σ	 = σ we obtain

D = σ(σ−1Dσ)σ−1 = (σ−1Dσ)	 = σD	σ−1,

thus σ−1Dσ = D	, and

Cσ−1 = σ(σ−1C)σ−1 = (σ−1C)	 = C	σ−1,

thus C = C	. This yields

Im = det

(
A Bσ

σ−1C σ−1Dσ

)
= A · σ−1Dσ −Bσ · σ−1C = AD	 −BC	,

and (iii)0 holds. This concludes the justification of (2.8).
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Finally, the block matrix U ∈ M2m,2(k) in (2.5) remains unconstrained in

Proposition 2.2 and therefore the group is isomorphic to SL2(k[K])�M2m,2(k).

We can identify the natural k[K]-module km with the standard k[K]-module

k[K], by mapping a cyclic generator of km to the cyclic generator K of k[K].

Therefore M2m,2(k) can be replaced by a direct sum of two copies of the stan-

dard SL2(k[K])-module Vst(k[K]).

2.2. The structure of the algebraic automorphism group G

for ΔK = tm. Now we focus on the special case ΔK = tm; that is, the case

(2.11) K =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Mm(Z).

In this situation we can take

(2.12) σ =

⎛⎜⎜⎜⎜⎝
0 0 · · · 1
...

... . .
. ...

0 1 · · · 0

1 0 · · · 0

⎞⎟⎟⎟⎟⎠ ∈ GLm(Z), and Σ =

(
Im

σ

)
∈ GL2m(Z)

in the analysis carried out in Section 2.1. We remark that this particular choice

of σ corresponds to the longest element in the symmetric group Sym(m), with

respect to the standard generators as a Coexeter group.

Proposition 2.4: Suppose that K has characteristic polynomial ΔK = tm.

Then the natural restriction homomorphism (2.3) sets up, over Z, a split short

exact sequence

G0(k) ↪→ G(k)
Res−−→→ B2(k)︸ ︷︷ ︸

∼=G(k)/G0(k)

≤ GL2(k),

where B2(k) is the group of invertible lower-triangular 2× 2 matrices.

Proof. We show below that the image of G(k) in GL2(k) under the restriction

homomorphism

(a) contains B2(k) by exhibiting an explicit section over Z, but

(b) does not contain elements of the form ( 1 b
0 1 ) with b �= 0.
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From this it follows that the image is precisely B2(k), because, once we

replace k by its field of fractions, there are no properly intermediate subgroups

between B2(k) and GL2(k), as can be seen from the Bruhat decomposition.

To prove (a), we define for a, d ∈ k× and c ∈ k the following elements

of GL2m+2(k):

(2.13)

U(a) = diag(a, a2, . . . , am, 1, a−1, . . . , a−m+1, a, 1),

V (d) = diag(d−1, d−2, . . . , d−m, d, d2, . . . , dm, 1, d),

W (c) = diag

(
exp(cEm), exp(cE∨

m),

(
1 0

c 1

))
,

where exp(t) =
∑∞

n=0 t
n/(n!) denotes the exponential series (which, evaluated

on nilpotent m × m-matrices, can be truncated after the mth term and thus

produces finite sums) and

Em =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 2 0

0 0 0
. . .

...
...

. . .
. . . (m− 1)

0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

E∨
m =

(
0 0

0 −Em−1
	

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0

0 0 0
. . .

...
...

0 −1 0
. . . 0 0

0 0 −2
. . . 0 0

...
...

. . .
. . . 0 0

0 0 · · · 0 −(m− 2) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A direct calculation reveals that the elements U(a), V (d) and W (c)

satisfy (iii) and (iv) of Proposition 2.2, while (i) and (ii) hold trivially; thus

U(a), V (d),W (c) ∈ G(k). Moreover, there is an affine subgroup and Z-sub-

scheme B ≤ G such that

B(k) = {U(a)V (d)W (c) | a, d ∈ k× and c ∈ k} and B(k) ∼= B2(k)
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via the natural restriction homomorphism, which satisfies

U(a) �→
(
a 0

0 1

)
, V (d) �→

(
1 0

0 d

)
, W (c) �→

(
1 0

c 1

)
;

the inverse can be built from the morphisms a �→ U(a), d �→ V (d) and c �→W (c)

which are defined over Z. The latter is clear for U(·) and V (·), and requires

a routine calculation for W (·): by induction, one sees that the factorials in

the denominators coming from the exponential series duly cancel out with the

entries of the relevant powers of cEm and cE∨
m.

To prove (b) we observe that (iii)′0 in the proof of Theorem 2.3 holds also for

elements g ∈ G(k) of the form (2.5) which satisfy Y = ( 1 b
0 1 ). Taking the trace

in equation (iv) of Proposition 2.2 (2), we obtain

mb+ tr(K)

=tr(bIm+K)=tr(AKD	−BK	C	) by taking the trace in (iv)

= tr(KD	A− C	BK	) by permuting matrices

= tr(KD	A−KB	C) by transposing the second matrix

= tr(K) by applying (iii)′0,

and this implies b = 0.

We remark that, alternatively, one can prove (b) as follows. Every g ∈ G(k)

restricts to an automorphism of the centre kZ of kL, which is represented

by Y = ( a b
c d ) ∈ GL2(k) with respect to the chosen basis z1, z2, and sim-

ilarly for g−1. The image (z′1, z
′
2) of the pair (z1, z2) under g−1 yields two

anti-symmetric bilinear forms which encode the Lie bracket; inspection of the

form associated to z′2 shows that bIm + dK should have the same rank as K,

namely m− 1; thus b = 0.

Proof of Theorem 1.10. In view of Theorem 2.3 and Proposition 2.4, it only

remains to show that the algebraic group G is connected. As

G(k) ∼= B2(k)� (SL2(k[K])� Vst(k[K])⊕2)

by an isomorphism of group schemes over Z, the connectedness of G follows

from the fact that G is generated by one-parameter subgroups, which are,

in particular, affine irreducible varieties containing 1; for instance, see [27,

Prop. 1.16].
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For our next step we record also the following consequence of Theorem 2.3

and Proposition 2.4.

Corollary 2.5: Suppose that K has characteristic polynomial ΔK = tm.

Then the group G0(k) is conjugate to the subgroup of GL2m+2(k) consisting of

elements of the form ⎛⎜⎝A B E

C D F

0 0 I2

⎞⎟⎠ ,

where A,B,C,D ∈ Mm(k) satisfy AD − BC = Im and are in Toeplitz form,

that is,

(2.14)

A =

⎛⎜⎜⎜⎜⎜⎝
a1 a2 · · · am

a1
. . .

...
. . . a2

a1

⎞⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
b1 b2 · · · bm

b1
. . .

...
. . . b2

b1

⎞⎟⎟⎟⎟⎟⎠ ,

C =

⎛⎜⎜⎜⎜⎜⎝
c1 c2 · · · cm

c1
. . .

...
. . . c2

c1

⎞⎟⎟⎟⎟⎟⎠ , D =

⎛⎜⎜⎜⎜⎜⎝
d1 d2 · · · dm

d1
. . .

...
. . . d2

d1

⎞⎟⎟⎟⎟⎟⎠
with suitable entries a1, . . . , dm ∈ k and 0 in white spaces, and E,F ∈ Mm,2(k).

The groupG(k) is generated byG0(k) and the elements U(a), V (d) andW (c),

for a, d ∈ k× and c ∈ k, which are defined in the proof of Proposition 2.4.

2.3. Change of coordinates. For ΔK = tm, the Lie lattice L is intimately

linked to the nilpotent group Γtm , defined in (1.3), and the algebraic automor-

phism group G plays a central role in the treatment of the pro-isomorphic zeta

function of Γtm ; see Section 3. With a view towards the computation of the

pro-isomorphic zeta function of the group Γtm , we perform a change of basis

from

S = (x1, x2, . . . , xm, y1, y2, . . . , ym, z1, z2)

to

S∗ = (x1, ym, x2, ym−1, . . . , xm, y1, z2, z1).

This basis change is achieved by conjugating first with diag(Σ, I2), already

built into Corollary 2.5 and reversing the order of y1, . . . , ym, and then
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with diag(Θ, ( 0 1
1 0 )), where Θ corresponds to the permutation of {1, 2, . . . , 2m}

given by

(2.15)

⎧⎨⎩i �→ 2i− 1 if 1 ≤ i ≤ m,

i �→ 2(i−m) if m < i ≤ 2m.

From the results in Section 2.2 we obtain the following description of G(k),

with respect to the basis S∗.

Proposition 2.6: Suppose that K has characteristic polynomial ΔK = tm.

Then, with respect to the basis S∗, the elements of G0(k) take the form

(2.16)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 X2 X3 · · · Xm ∗ ∗
X1

. . .
. . .

...
...

...
. . .

. . . X3 ∗ ∗
X1 X2 ∗ ∗

X1 ∗ ∗
1 0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with Xi=( ai bi
ci di

) ∈ M2(k) for 1 ≤ i ≤ m

and arbitrary entries in the positions marked ∗,
such that the matrices A,B,C,D defined as in (2.14) satisfy AD −BC = Im.

Furthermore, still with respect to the basis S∗, the group G(k) is generated

by G0(k) and

(2.17)

U ′(a)=T−1(U(a)V (a))T =diag

((
1

a

)
, . . . ,

(
1

a

)
,

(
a

a

))
,

V ′(d) = T−1(U(d)m−1V (d)mR(d)m) T

= diag

(
dm−1I2, d

m−2I2, . . . , dI2, I2,

(
dm

dm−1

))
,

W ′(c) = T−1W (c)T

for a, d ∈ k× and c ∈ k, where T = diag(ΣΘ, ( 0 1
1 0 )), the one-parameter

groups U(·), V (·),W (·) are as in (2.13) and

R(d) = diag(d, d, . . . , d, d−1, d−1, . . . , d−1, 1, 1) ∈ G0(k).
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Corollary 2.7: Suppose that K has characteristic polynomial ΔK = tm.

Then the quotient of G by its unipotent radical N is isomorphic to GL2 ×GL1,

with an explicit section defined over Z with respect to the basis S∗ as follows:

GL2(k)×GL1(k)→H(k),

(A, ν) �→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

νm−1A 0

νm−2A
. . .

νA

0 A

νm detA 0

0 νm−1 detA

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. We consider the affine subgroup N of G such that N(k) is generated

by elements of the form (2.16) with X1 = I2 together with elements of the

subgroup {W ′(c) | c ∈ k}: see (2.17). The group N is a connected unipotent

normal subgroup of G.

Moreover, the quotient G(k)/N(k) is generated by the block-diagonal matri-

ces diag(X1, . . . , X1, I2) with X1 ∈ SL2(k) and by the one-parameter subgroups

{U ′(a) | a ∈ k×} and {V ′(ν) | ν ∈ k×}; this analysis also provides a section

for G → G/N over Z. Finally G/N ∼= GL2 × GL1 is reductive, and thus N is

the unipotent radical of G.

Remark 2.8: For computational purposes we replaced the generators U(·) and

V (·) by the generators U ′(·) and V ′(·). They generate the same torus, mod-

ulo G0 and up to coordinate change; see (2.17).

For similar reasons, a further simplification of the computation of the pro-

isomorphic zeta function can be achieved by replacing the one-parameter sub-

group W ′(·) in (2.17) by c �→W ′′(c), where

W ′′(c) =T−1diag(exp(cEm + 1
2 (1−m)cK), exp(cE∨

m − 1
2 (1−m)cK	), ( 1 0

c 1 ))T.

This switch is inspired by Lie algebra considerations and works for an arbitrary

Z-algebra k if m is odd; for even m the switch requires that k is a Z[ 12 ]-algebra.

For the applications in the present paper, we do not need the variant for m = 2

and we use it only for m = 3. Hence no primes need to be excluded when we

compute the local pro-isomorphic zeta functions for Theorems 1.1 and 1.3.
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Example 2.9: In order to compute later on the pro-isomorphic zeta functions of

the groups Γtm for m ∈ {2, 3}, we record in these cases explicit descriptions of

the unipotent radical N of G, with respect to the basis S∗. For completeness we

also provide a description for m = 1 which is straightforward; compare with [3,

§3.3.4]. We have

N(k)=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝ I2 ∗ ∗

1 λ

1

⎞⎟⎠ | λ ∈ k, and arbitrary entries

in the positions marked ∗

⎫⎪⎪⎬⎪⎪⎭ if m=1,

N(k)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

I2 X2 ∗ ∗
0 I2 ∗ ∗

1 tr(X2)

1

⎞⎟⎟⎟⎠ | X2∈M2(k), and arbitrary entries

in the positions marked ∗

⎫⎪⎪⎪⎬⎪⎪⎪⎭ if m=2,

N(k)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
I2 X2 X3 ∗ ∗
0 I2 X2 + λI2 ∗ ∗
0 0 I2 ∗ ∗

1 λ

1

⎞⎟⎟⎟⎟⎟⎠ |

X2, X3∈M2(k) with tr(X2)=0,

tr(X3) + det(X2) = 0, λ ∈ k,

and arbitrary entries

in the positions marked ∗

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
if m=3.

Indeed, for m = 2 we substitute X1 = I2 in (2.16) and use the determinant

equation in Proposition 2.6 to obtain(
a1 a2

a1

)(
d1 d2

d1

)
−
(
b1 b2

b1

)(
c1 c2

c1

)
=

(
1

1

)

with a1−1=d1−1=b1=c1=0, and therefore a2+d2=0, namely tr(X2)=0; this

accounts for the contribution of G0(k). The explicit form of W ′(c) for c ∈ k is

W ′(c) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

c 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0

1 c

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Combining the contributions, the result for m = 2 follows.
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For m = 3, we start again by substituting X1 = I2 in (2.16), which together

with the determinant equation⎛⎜⎝a1 a2 a3

a1 a2

a1

⎞⎟⎠
⎛⎜⎝d1 d2 d3

d1 d2

d1

⎞⎟⎠−

⎛⎜⎝b1 b2 b3

b1 b2

b1

⎞⎟⎠
⎛⎜⎝c1 c2 c3

c1 c2

c1

⎞⎟⎠ =

⎛⎜⎝1

1

1

⎞⎟⎠
gives a1 − 1 = d1 − 1 = b1 = c1 = 0 and

tr(X2) = a2 + b2 = 0,

tr(X3) + det(X3) = a3 + d3 + a2d2 − b2c2 = 0;

this yields the intersection of the unipotent radical N(k) with G0(k).

Offsetting W ′(·) in accordance with Remark 2.8, we get the one-parameter

subgroup W ′′(·) which takes the form

W ′′(c) =

⎛⎜⎜⎜⎜⎜⎝
I2 0 0

0 I2 cI2

0 0 I2

1 c

1

⎞⎟⎟⎟⎟⎟⎠ , for c ∈ k.

Combining the contributions, we arrive at the result for m = 3.

3. Machinery for computing p-adic integrals over algebraic groups

In this section we collect various facts and notation in order to use the technol-

ogy developed in [19, 23, 14, 4]. The general treatment produces a finite, but

typically unspecified set of ‘exceptional’ primes; we take care to verify that, for

the applications in this paper, there is no need to exclude any primes.

3.1. Lie correspondence for class-two nilpotent groups. Let Γ be a

finitely generated torsion-free nilpotent group. Grunewald, Segal and Smith [19,

Thm. 4.1] showed that the local pro-isomorphic zeta functions of Γ are closely

linked to the local pro-isomorphic zeta functions of a nilpotent Z-Lie lattice L

that can be constructed from Γ; indeed,

ζ∧Γ,p(s) = ζ∧L,p(s)
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for almost all primes p. Furthermore, they remark that, if Γ has nilpotency

class two, a suitable Lie correspondence can be implemented more directly,

and they highlight consequences for other types of zeta functions. The direct

correspondence has been reinterpreted and put to use, for instance, in [32,

§2.4.1]. For the record, we state and explain the implications of the special

construction in nilpotency class two for pro-isomorphic zeta functions, where it

is applied not merely to a group, but also to its lattice of subgroups; compare

with [6, Rem. 2.2].

Let Γ be a finitely generated torsion-free class-two nilpotent group of Hirsch

length d, and let Z = Z(Γ) denote its centre. Then the isomorphism type of Γ

is uniquely determined by

Γ/Z = 〈x1Z, . . . , xaZ〉 ∼= Za, Z = 〈y1, . . . , yd−a〉 ∼= Zd−a

and the map

γ : Γ/Z × Γ/Z → Z, (gZ, hZ) �→ [g, h].

In fact, this data yields a Z-Lie lattice

(3.1) L = Zẋ1 ⊕ · · · ⊕ Zẋa ⊕ Zẏ1 ⊕ · · · ⊕ Zẏd−a
∼= Γ/Z ⊕ Z,

where the Lie bracket is induced by the anti-symmetric bi-additive map γ and

the stipulation that Zẏ1 ⊕ · · · ⊕ Zẏd−a be central in L:

[ẋi, ẋj ]Lie=

d−a∑
k=1

ci,j,k ẏk for 1≤ i, j≤a, where γ(xiZ, xjZ)=[xi, xj ]=

d−a∏
k=1

y
ci,j,k
k ,

[ẋi, ẏj ]Lie=[ẏj, ẏk]Lie=0 for 1≤ i≤a and 1≤j≤k≤d− a.

Conversely, given such a Lie lattice one can define a class-two nilpotent group,

essentially by factoring out from the free class-two nilpotent group on d gener-

ators x̂1, . . . , x̂a, ŷ1, . . . , ŷd−a the relations

[x̂i, x̂j ]Lie =

d−a∏
k=1

ŷ
ci,j,k
k for 1 ≤ i, j ≤ a, where [ẋi, ẋj ]Lie =

d−a∑
k=1

ci,j,k yk,

[x̂i, ŷj ] = [ŷj , ŷk] = 1 for 1 ≤ i ≤ a and 1 ≤ j ≤ k ≤ d− a.

Moreover, the two constructions set up a 1-to-1 correspondence, up to iso-

morphism, between finitely generated torsion-free class-two nilpotent groups of

Hirsch length d and class-two nilpotent Z-Lie lattices of dimension d. For short,

we call this the class-two Lie correspondence.
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We observe that, for any prime p, essentially the same constructions yield

a ‘local’ class-two Lie correspondence, up to isomorphism, between torsion-free

class-two nilpotent pro-p groups of rank d and class-two nilpotent Zp-Lie lattices

of dimension d; compare with [18, §1] and [32, §2.4.1].
Proposition 3.1: Let Γ be a finitely generated torsion-free class-two nilpotent

group of Hirsch length d, with centre Z = Z(Γ), such that

Γ/Z = 〈x1Z, . . . , xaZ〉 ∼= Za and Z = 〈y1, . . . , yd−a〉 ∼= Zd−a.

Let L be the Z-Lie lattice associated to Γ under the class-two Lie correspondence

as in (3.1).

Then there is an index-preserving 1-to-1 correspondence between finite-index

subgroups Δ ≤ Γ and finite-index Lie sublattices M ≤ L. Furthermore, sub-

groups Δ satisfying Δ̂ ∼= Γ̂ are bijectively matched with Lie sublattices M such

that the Zp-Lie lattices Zp ⊗Z M and Lp = Zp ⊗Z L are isomorphic for all

primes p. In particular, this implies that

ζ∧Γ,p(s) = ζ∧L,p(s) = ζ isoLp
(s) for all primes p.

Proof. It was already remarked in [19], just after the proof of Theorem 4.1 in

that paper, that there exists an index-preserving 1-to-1 correspondence between

finite-index subgroups of Γ and finite-index Lie sublattices of L.

Indeed, we can regard L as a graded Z-Lie lattice with respect to the decompo-

sition L = L(1)⊕L(2), where L(1) = Γ/Z and L(2) = Z. Then there is a canonical

index-preserving map from the set of finite-index subgroups Δ of Γ to the set of

finite-index graded Lie sublattices of L, with finite fibers; it maps Δ ≤ Γ to the

graded Lie sublattice M(1) ⊕M(2) ≤ L, where M(1) = ΔZ/Z, M(2) = Δ ∩ Z,
and the fiber aboveM(1)⊕M(2) has size |L(2) :M(2)|a = |Z : Δ∩Z|a. Similarly,

there is a canonical index-preserving map from the set of all finite-index Lie sub-

lattices M of L to the set of finite-index graded Lie sublattices of L, with finite

fibers; it maps M to the graded Lie sublattice M(1) ⊕M(2) ≤ L, where M(1) is

the image ofM under the projection from L to L(1) along L(2),M(2) =M∩L(2),

and the fiber above M(1) ⊕M(2) again has size |L(2) : M(2)|a. Thus we obtain

a (non-canonical) index-preserving 1-to-1 correspondence between finite-index

subgroups of Γ and finite-index Lie sublattices of L, simply by matching the

members of equal-sized fibres above graded Lie sublattices of L.
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Next we fix a prime p, a finite-index subgroup Δ ≤ Γ and its image M ≤ L

under the 1-by-1 correspondence set up above so that Δ and M give rise to the

same graded Lie sublattice Mgr of L. It remains to justify that Δ̂p
∼= Γ̂p if and

only if Zp⊗M ∼= Lp. First we observe that CΓ(Δ) = Z and thus Δ∩Z = Z(Δ).

This implies that Mgr is isomorphic to the Z-Lie lattice associated canonically

to Δ via the class-two Lie correspondence. Furthermore,Mgr andM are clearly

isomorphic as Z-Lie lattices. Since the constructions that lead to the class-two

Lie correspondences for discrete nilpotent groups and for nilpotent pro-p groups

are essentially the same, we see that the Zp-Lie lattice associated canonically

to the pro-p completion Δ̂p can be obtained from M by extension of scalars,

i.e., it is isomorphic to Zp ⊗Z M . The same analysis applies, of course, also

to Γ in place of Δ. Applying the local class-two Lie correspondence, we deduce

that Δ̂p
∼= Γ̂p if and only if Zp ⊗M ∼= Lp.

Remark 3.2: In a preliminary version of this article we erroneously stated that

there was a simple map Γ → L that would induce a 1-to-1 correspondence

between finite-index subgroups of Γ and finite-index Lie sublattices of L with

the properties described in Proposition 3.1. Our misunderstanding was noticed

by Hyodo, who discusses the correspondence in more detail in [22, §7]. For

completeness, we recall that for odd primes p, there is, in fact, a more conceptual

way to establish the equalities

ζ∧Γ,p(s) = ζ∧L,p(s) = ζ isoLp
(s)

which results from the Lie theory for torsion-free pro-p groups that are PF;

compare with [17].

3.2. Local pro-isomorphic zeta functions as integrals over reduc-

tive groups. Recall from Section 2 the notion of the algebraic automorphism

group Aut(L) of a Z-Lie lattice L; via a Z-basis of L, the group Aut(L) is

realised as an affine Z-group scheme G ≤ GLd, where d is the Z-rank of L. As

before, for any commutative ring R with 1 we write RL = R⊗ZL and, for short,

we set

Lp = ZpL for every prime p.
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Proposition 3.3 (Grunewald, Segal, Smith [19, Prop. 3.4]): Let L be a nilpo-

tent Z-Lie lattice of Z-rank d, and let G = Aut(L) ≤ GLd denote the algebraic

automorphism group of L with respect to some Z-basis. For each prime p, let

Gp = G(Qp) and G+
p = Gp ∩Md(Zp) ∼= Aut(QpL) ∩ End(ZpL),

equipped with the right Haar measure μGp on the locally compact group Gp

such that μp(G(Zp)) = 1. Then for all primes p,

(3.2) ζ isoLp
(s) =

∫
G+

p

|det g| sp dμGp(g)

where ζ isoLp
(s) enumerates Lie sublattices that are isomorphic to Lp.

Wemay decompose the 1-componentG◦ into a semidirect productG◦=N�H

of its unipotent radical N and a reductive group H; compare with [21, §VIII.4].
Fix a prime p and write G=G(Qp), N=N(Qp), H=H(Qp). Let V =QpL

∼=Q d
p

be the Q d
p -vector space on which G acts from the right. In [14, §2], du Sautoy

and Lubotzky provide a general framework for reducing an integral of the

form (3.2) to an integral over a suitable subset H+ ⊆ H . Their reduction

depends, in general, on several technical assumptions (some of which can be

realised by excluding finitely many primes):

(a) G = G◦ is connected.

(b) There exists a vector space decomposition V =
⊕c

i=1 Ui, with asso-

ciated flag Vj =
⊕c

i=j Ui, 1 ≤ j ≤ c + 1, such that each Ui is H-

invariant, each Vj is N -invariant and the induced action of N on each

quotient Vj/Vj+1, 1 ≤ j ≤ c, is trivial.

(c) A certain lifting condition holds with respect to this decomposition;

see [14, Assumption 2.3] for a complete description and Condition 3.4

below for a specific instance.

The requirement that the action of N on the quotients Vj/Vj+1 be trivial is

not actually needed for the reduction. However, it is usually desirable—for

both theoretical and practical applications. We will shortly see that in our

applications we need to drop this requirement.

We now specialise to the case where L is a D∗-Lie lattice associated, via (2.2)

above, to the polynomial Δ(t) = tm for some integer m ≥ 2. Note that L is a

class-two nilpotent Z-Lie lattice of rank d = 2m+ 2 with rank-two centre and

Z(L) = [L,L]. Our aim is to identify modified versions of the above technical

assumptions in order to carry out a reduction of the integral in the spirit of
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du Sautoy and Lubotzky, without excluding any primes. In our setting, G is

connected and the splitting G = N�H is very explicit; see Corollary 2.7. Thus

we are not worried about (a). We write V = U1 ⊕ U2, where U2 = [QpL,Qp L]

and U1 is an H-stable complement to U2 in V , corresponding to the abeliani-

sation of QpL; in the case of interest to us, U1 is the Qp-span of a natural set

of generators for the Lie lattice Lp. Note that U2 is automatically invariant

under the action of G, while U1 is H-invariant by construction; however, our

decomposition is ‘coarse’ in the sense that the actions of N on V/U2 and on U2

are not trivial as stipulated in (b).

We now go about describing a weak version of (c) that suffices for our pur-

poses. Remarkably, [14, Assumption 2.3] does not apply to the D∗-Lie lattice

associated to t3; compare with Remark 5.6 below. Let N1 = N ∩ker(ψ′
2), where

ψ′
2 : G → Aut(V/U2) denotes the natural action. Since U2 is N -invariant, we

may define the induced map ψ2 : G/N1 → Aut(V/U2) ≤ GL2m(Qp), and the set

(G/N1)
+ = ψ−1

2 (ψ2(G/N1) ∩M2m(Zp)),

where 2m = dimV/U2 is the dimension of the abelianisation of Lp.

Condition 3.4: For every g0N1 ∈ (G/N1)
+ there exists g ∈ G+ such that

g0N1 = gN1.

Remark 3.5: The effect of Condition 3.4 is weaker than that of [14, Assump-

tion 2.3], because in our situation N does not act trivially on V/U2. Condi-

tion 3.4 is trivially satisfied due to the freedom to replace g0 by g ∈ g0N1 such

that vg has zero component in U2 for all v ∈ U1. In matrix terms, this amounts

to replacing the top-right block ‘above the centre’ by zeros. The action of g0

and g on U2 is the same and induced by the action on V/U2; as the action

on V/U2 is ‘integral’, it is also integral on U2.

Define ϑ0 : H → R≥0 by setting

ϑ0(h) = μN/N1
({uN1 ∈ N/N1 | uhN1 ∈ (G/N1)

+}),
where μN/N1

denotes the right Haar measure on N/N1, normalised such that the

set ψ−1
2 (ψ2(N/N1) ∩M2m(Zp)) has measure 1. Similarly, define ϑ1 : H → R≥0

by setting

ϑ1(h) = μN1({u ∈ N1 | nh ∈ G+}),
where μN1 denotes the right Haar measure on N1, normalised such that the set

N+
1 = N1(Zp) has measure 1.
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Write μG, respectively μH , for the right Haar measure on G, respectively H ,

normalised such that μG(G(Zp)) = 1, respectively μH(H(Zp)) = 1. From

G=N�H one deduces (using Condition 3.4 and Remark 3.5) that

μG = μN/N1
· μN1 · μH .

Setting G+ = G ∩ M2m+2(Zp) and H+ = H ∩ M2m+2(Zp), one obtains the

following by a mild adaptation of the proof of [14, Thm. 2.2] to the coarse

decomposition V = U1 ⊕ U2.

Theorem 3.6: In the set-up described above, we have∫
G+

|det g| sp dμG(g) =

∫
H+

|deth| sp ϑ0(h)ϑ1(h) dμH(h).

In our applications we will see that ϑ1(h) is straightforward to calculate,

while ϑ0(h) appears to be rather complicated to track down for large m. For

short, we set ϑ(h) = ϑ0(h)ϑ1(h) for h ∈ H . In view of [14, Thm. 2.3], one

could suspect the function ϑ : H → R>0 to be a character on H , but it was

demonstrated in [6] that, for general class-two nilpotent groups, one cannot

expect this to be the case. Indeed, in Sections 4 and 5 we will see that ϑ is a

character for the group Γt2 , but that it is not a character for the group Γt3 ; see

Remark 5.6. Subject to the modifications detailed above, the three technical

assumptions (a), (b), (c) of [14, §2] are, indeed, satisfied in our setting for every

prime p. For a general class-two nilpotent Lie lattice, our methods leading to

Theorem 3.6 work for almost all primes p and may prove to be useful in other

contexts, where [14, Assumption 2.3] does not hold.

3.3. Utilising a p-adic Bruhat decomposition. We recall the machinery

developed by Igusa [23], du Sautoy and Lubotzky [14] and the first author [4]

for utilising a p-adic Bruhat decomposition in order to compute integrals over

reductive groups; the reference [4] is useful for practical purposes, where the

notation (and some further choices) are well-suited to the current paper. We

apply this theory in Sections 4 and 5.

Suppose that the groupH is isomorphic to an affine Z-group scheme Ḣ ≤ GLḋ
and denote by � : Ḣ → H a corresponding isomorphism. In our applications, we

have Ḣ = GL2×GL1 ≤ GL3 and � is the isomorphism described in Corollary 2.7.

It is useful to keep this special situation in mind for a concrete interpretation

of the following general approach. We write Ḣ = Ḣ(Qp), equipped with the
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right Haar measure μḢ normalised such that μḢ(Ḣ(Zp)) = 1. We take interest

in the p-adic integral

ZḢ,�,ϑ,p(s) =

∫
H+�−1

|deth�| sp ϑ(h�) dμḢ (h),

where H+�−1 denotes the full pre-image of H+ under � (in the literature this

pre-image is usually denoted by Ḣ+, for short, but we prefer the more de-

scriptive form to avoid misunderstandings). In our applications, � induces a

measure-preserving map from Ḣ to H , as Ḣ(Zp)� = H(Zp); in this situation,

one could even get away with ‘identifying’ H and Ḣ.

We fix a maximal torus T in Ḣ and assume that T splits over Q; this can be

arranged in our applications. Under an assumption of ‘good reduction’, elements

of T act by conjugation on minimal closed unipotent subgroups of Ḣ; this

action gives rise to a root system Φ ⊆ Hom(T,Gm). The (finite) Weyl groupW

of Ḣ corresponds to NḢ(T)/T, where NḢ(T) is the normaliser of T in Ḣ. We

suppress here some necessary requirements of good reduction since these will all

trivially hold in our applications; the technical requirements are detailed in [4].

We choose a set of simple roots α1, . . . , α� which define the positive roots Φ+.

Let Ξ = Hom(Gm,T) denote the set of co-characters of T. We refer to [14] for

a description of the Iwahori subgroup B ≤ Ḣ(Zp) with respect to the simple

roots α1, . . . , α�. Let π denote a fixed uniformising parameter for Zp, e.g., π = p.

The p-adic Bruhat decomposition theorem of Iwahori and Matsumoto [24] gives

Ḣ = Ḣ(Qp) =
∐

w∈W
ξ∈Ξ

Bw ξ(π)B and Ḣ(Zp) =
∐
w∈W

BwB,

where elements w ∈ W in this context are to be read as coset representa-

tives gw ∈ NḢ(T)(Zp). One defines Ξ+ = {ξ ∈ Ξ | ξ(π) ∈ H+�−1} and

considers, for w ∈W ,

wΞ+
w = {ξ ∈ Ξ+ |αi(ξ(π)) ∈ Zp for 1 ≤ i ≤ �,

and αi(ξ(π)) ∈ pZp whenever αi ∈ w(Φ−)},

where Φ− denotes the set of negative roots. Utilising symmetries in the affine

Weyl group and the fact that |det · �|p, ϑ(· �) are constant on double cosets

of B ≤ Ḣ(Zp), (compare with [4, Lem. 3.10]) the following generalisation of

[14, (5.4)] holds.
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Proposition 3.7 (du Sautoy, Lubotzky; Berman [4, Prop. 4.2]): If T splits

over Q then, assuming good reduction,

ZḢ,�,ϑ,p(s) =
∑
w∈W

p− len(w)
∑

ξ∈wΞ+
w

∣∣∣∣( ∏
β∈Φ+

β

)
(ξ(π))

∣∣∣∣−1

p

|det ξ(π)�| sp ϑ(ξ(π)�),

where len(·) is the standard length function on W .

Finally we recall a natural pairing between Ξ=Hom(Gm,T) and Hom(T,Gm):

this is the map (β, ξ) �→ 〈β, ξ〉, where β(ξ(τ)) = τ 〈β,ξ〉 for all τ ∈ Gm. As

in [4, §5.2], it will turn out to be convenient to judiciously choose a basis

for Hom(T,Gm), consisting of simple roots and dominant weights for the contra-

gredient representations of irreducible components of �, and then to determine

a dual basis for Hom(Gm,T). This will enable an explicit description of the

set wΞ+
w .

Example 3.8: To illustrate the general set-up, we indicate how it can be used

to compute the pro-isomorphic zeta function of the D∗-group Γ = Γt of Hirsch

length 4, defined in (1.3). Proposition 3.1 shows that ζ∧Γ,p(s) = ζ∧L,p(s) for all

primes p; here L is the Z-Lie lattice of Z-rank 4, defined by (2.2) with respect

to the Z-basis S, where K = (0) is the companion matrix of the prime poly-

nomial ΔK = t. We consider the algebraic automorphism group G = Aut(L),

with respect to the Z-basis S∗ = (x1, y1, z2, z1) as in Corollary 2.7 and Exam-

ple 2.9.

Let p be a prime; our aim is to calculate the local pro-isomorphic zeta func-

tion ζ∧L,p(s). The coarse decomposition of V = QpL described in Section 3.2 is

not suitable, due to the fact that here the centre does not coincide with the

derived sublattice of L. Instead we require a refined decomposition. Setting

U1 = spanQp
{x1, y1}, U2 = spanQp

{z2}, U3 = spanQp
{z1},

we write

G = G(Qp), H = H(Qp), N = N(Qp);

these groups act on V = QpL = U1⊕U2⊕U3 in a suitable way. We now require

the following subgroups of the unipotent radical: N1 = N ∩ ker(ψ′
2), where

ψ′
2 : G→ Aut(V/(U2 +U3)) denotes the natural action, and N2 = N ∩ ker(ψ′

3),

where ψ′
3 : G → Aut(V/U3) denotes the natural action. By Corollary 2.7, the

elements of the reductive subgroup H are of the form

(3.3) diag(A, ν detA, detA), where (A, ν) ∈ GL2(Qp)× GL1(Qp),



652 M. N. BERMAN, B. KLOPSCH AND U. ONN Isr. J. Math.

and, according to Example 2.9, elements of N take the form⎛⎜⎝ I2 ∗ ∗
0 1 λ

0 0 1

⎞⎟⎠ , with λ∈Qp and arbitrary entries in the positions marked ∗.

As explained above, we can utilise Proposition 3.3 and Theorem 3.6 to com-

pute ζ∧L,p(s) via an integral over H+. A short calculation (using a slightly

different analysis of ϑ, based on [14, §2] with respect to the decomposition

U1 ⊕ U2 ⊕ U3) shows that, for h ∈ H+ of the form (3.3),

ϑ(h) = |detA|−5
p |ν|−2

p .

From here on a direct calculation could be carried out; but we prefer to illustrate

the use of the Bruhat decomposition. We observe that the morphism

� : Ḣ = GL2 × GL1 → H, (A, ν) �→ diag(A, ν detA, detA)

induces a measure-preserving isomorphism Ḣ = Ḣ(Qp) → H such that

H+�−1 = {(A, ν) | vp(A) ≥ 0 and vp(detA) + vp(ν) ≥ 0},
where vp : Qp → Z∪{∞} denotes in the first place the standard p-adic valuation

map and also the map M2(Qp) → Z∪ {∞}, (aij) �→ min{vp(aij) | 1 ≤ i, j ≤ 2}.
Thus we obtain

ζ∧L,p(s) =

∫
(A,ν)∈Ḣ

with vp(A)≥0,
vp(detA)+vp(ν)≥0

|detA| 3s−5
p |ν| s−2

p dμp(A, ν).

For convenience, we consider Ḣ = GL2×GL1 as a subgroup of GL3, embedded

as block matrices via (A, ν) �→ diag(A, ν). In particular,

T = T(Qp) = {diag(λ1, λ2, ν) | λ1, λ2, ν ∈ Q×
p }

is a maximal torus in Ḣ. By Proposition 3.7 we obtain

ζ∧L,p(s) =
∑
w∈W

p− len(w)
∑

ξ∈wΞ+
w

|α(ξ(π))|−1
p |det(ξ(π)�)| sp ϑ(ξ(π)�),

where we choose α ∈ Hom(T,Gm), α(diag(λ1, λ2, ν)) = λ1λ
−1
2 as the single

positive root, and we have

wΞ+
w = {ξ ∈ Ξ+ | α(ξ(π)) ∈ Zp, and α(ξ(π)) ∈ pZp if w = w0},
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where the Weyl group is W = {1, w0}. In order to describe the set wΞ+
w we

consider dominant weights for the contragredient representation, following [14].

These are given by

ω−1
1 (h) = λ2, ω−1

2 (h) = λ1λ2ν for h = diag(λ1, λ2, ν) ∈ T .

It follows that α, ω−1
1 , ω−1

2 form a Z-basis for Hom(T,Gm) whose N0-span con-

tains all the weights of �. Thus to detect whether an element h ∈ T is integral

it is sufficient to check whether α(h), ω−1
1 (h), ω−1

2 (h) all lie in Zp. We rewrite

α1 = α, α2 = ω−1
1 , α3 = ω−1

2 and find that ξ1, ξ2, ξ3 ∈ Ξ defined by

ξ1(τ) = (τ, 1, τ−1), ξ2(τ) = (τ, τ, τ−2), ξ3(τ) = (1, 1, τ) for τ ∈ Q×
p

form a dual basis so that

〈αi, ξj〉 =
⎧⎨⎩1 if i = j,

0 if i �= j.

A general element of Ξ has the form ξe = ξ e1
1 ξ e2

2 ξ e3
3 with e = (e1, e2, e3) ∈ Z3

and satisfies ξe(π) = diag(πe1+e2 , πe2 , π−e1−2e2+e3). Hence

ξe(π)
� = diag(πe1+e2 , πe2 , πe3 , πe1+2e2)

and we read off

|det ξe(π)�| sp = p−(2e1+4e2+e3)s, ϑ(ξe(π)
�) = p3e1+6e2+2e3 .

Note that |α(ξe(π))|−1 = p〈α,ξe〉 = p〈α1,ξe〉 = pe1 and we can rewrite

wΞ+
w = {ξ ∈ Ξ | 〈αi, ξ〉 ≥ 0 for i ∈ {1, 2, 3}, and 〈α1, ξ〉 > 0 if w = w0},

since α1 ∈ w(Φ−) if and only if w �= 1. Thus we obtain

ZḢ,�,ϑ,p(s) =
∑
w∈W

p− len(w)
∑

ξ∈wΞ+
w

p〈α,ξ〉 |det ξ(π)�| sp ϑ(ξ(π)�)

=
∑
w∈W

p− len(w)
∑

e∈N 3
0 with

e1>0 if w �=1

p(4−2s)e1+(6−4s)e2+(2−s)e3

=
1

(1 − p6−4s)(1 − p2−s)

(
p0 · 1

1− p4−2s
+ p−1 · p4−2s

1− p4−2s

)
=

1

(1 − p3−2s)(1 − p4−2s)(1− p2−s)
,

confirming the formula that we reported in the introduction, based on [3, §3.3.4].
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4. The local pro-isomorphic zeta functions of the group Γt2

In this section we consider the pro-isomorphic zeta function of the D∗-group
Γ = Γt2 of Hirsch length 6, defined in (1.3). We prove Theorem 1.1 and obtain

Corollary 1.2; it turns out that we can proceed as in Example 3.8, taking care

of a little extra complexity along the way.

Proposition 3.1 shows that ζ∧Γ,p(s) = ζ∧L,p(s) for all primes p, where L is

the Z-Lie lattice associated to Γ. In our setting, L is the Q-indecomposable

D∗-Lie lattice L of Z-rank 6, defined by (2.2) with respect to the Z-basis S,

where K = ( 0 1
0 0 ) is the companion matrix of the primary polynomial ΔK = t2.

We consider the algebraic automorphism group G = Aut(L), with respect to

the Z-basis S∗ = (x1, y2, x2, y1, z2, z1) as in Corollary 2.7 and Example 2.9.

Let p be a prime; we will set about calculating the local pro-isomorphic zeta

function ζ∧L,p(s). In the notation of Section 3, we set U1 = spanQp
{x1, y2, x2, y1}

and U2 = spanQp
{z2, z1}. We write

G = G(Qp), H = H(Qp), N = N(Qp);

these groups act on V = QpL = U1 ⊕ U2. By Corollary 2.7, the elements of the

reductive subgroup H are of the form

(4.1)

⎛⎜⎜⎜⎝
νA 0 0 0

0 A 0 0

0 0 ν2 detA 0

0 0 0 ν detA

⎞⎟⎟⎟⎠ , where (A, ν)∈GL2(Qp)× GL1(Qp).

The description of the unipotent radical given in Example 2.9 shows that ele-

ments of N are of the form⎛⎜⎜⎜⎝
I2 B ∗ ∗
0 I2 ∗ ∗
0 0 1 trB

0 0 0 1

⎞⎟⎟⎟⎠ , where B ∈ M2(Qp)

and there are arbitrary entries in the positions marked ∗. As explained in

Section 3, we can utilise Proposition 3.3 and Theorem 3.6 to compute ζ∧L,p(s)

via an integral over H+.

We now set about calculating the functions ϑ0, ϑ1 defined in Section 3; we

refer to Section 3.2 for definitions of N1, μN/N1
and μN1 . Noting that

N/N1
∼= Q 4

p and N1
∼= Q 8

p ,
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we obtain for h ∈ H+ of the form (4.1)

ϑ0(h) = |detA|−2
p and ϑ1(h) = |ν3 detA2|−4

p ,

hence

ϑ(h) = ϑ0(h)ϑ1(h) = |detA|−10
p |ν|−12

p ;

in particular, ϑ : H → R>0 is a character.

We observe that the morphism

� : Ḣ = GL2 × GL1 → H, (A, ν) �→ diag(νA,A, ν2 detA, ν detA)

induces a measure-preserving isomorphism Ḣ = Ḣ(Qp) → H such that

H+�−1 = {(A, ν) | vp(A) ≥ 0 and vp(A) + vp(ν) ≥ 0},

where (as in Example 3.8) vp : Qp → Z ∪ {∞} denotes the standard p-adic

valuation map as well as the map M2(Qp) → Z ∪ {∞},

(aij) �→ min{vp(aij) | 1 ≤ i, j ≤ 2}.

Thus we obtain

(4.2) ζ∧L,p(s) =

∫
(A,ν)∈Ḣ

with vp(A)≥0,
vp(A)+vp(ν)≥0

|detA| 4s−10
p |ν| 5s−12

p dμp(A, ν).

For convenience, we consider Ḣ = GL2×GL1 as a subgroup of GL3, embedded

as block matrices via (A, ν) �→ diag(A, ν). In particular,

T = T(Qp) = {diag(λ1, λ2, ν) | λ1, λ2, ν ∈ Q×
p }

is a maximal torus in Ḣ.

By Proposition 3.7 we obtain

ζ∧L,p(s) =
∑
w∈W

p− len(w)
∑

ξ∈wΞ+
w

|α(ξ(π))|−1
p |det(ξ(π)�)| sp ϑ(ξ(π)�),

where we choose α ∈ Hom(T,Gm), α(diag(λ1, λ2, ν)) = λ1λ
−1
2 as the single

positive root, and we have

wΞ+
w = {ξ ∈ Ξ+ | α(ξ(π)) ∈ Zp, and α(ξ(π)) ∈ pZp if w = w0},
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where the Weyl group is W = {1, w0}. In order to describe the set wΞ+
w we

will need to consider dominant weights for the contragredient representation,

following [14]. These are given by

ω−1
1 (h) = λ2ν, ω−1

2 (h) = λ2, ω−1
3 (h) = λ1λ2ν

2, ω−1
4 (h) = λ1λ2ν

for h = diag(λ1, λ2, ν) ∈ T . It follows that α, ω−1
1 , ω−1

2 form a Z-basis

for Hom(T,Gm) whose N0-span contains all the weights of �. Thus to de-

tect whether an element h ∈ T is integral it is sufficient to check whether

α(h), ω−1
1 (h), ω−1

2 (h) all lie in Zp. We rewrite α1 = α, α2 = ω−1
1 , α3 = ω−1

2 and

seek a dual basis, namely elements ξ1, ξ2, ξ3 ∈ Ξ such that

〈αi, ξj〉 =
⎧⎨⎩1 if i = j,

0 if i �= j.

A routine calculation shows that the following elements suffice:

ξ1(τ) = (τ, 1, 1), ξ2(τ) = (1, 1, τ), ξ3(τ) = (τ, τ, τ−1) for τ ∈ Q×
p .

A general element of Ξ has the form ξe = ξ e1
1 ξ e2

2 ξ e3
3 with e = (e1, e2, e3) ∈ Z3

and satisfies ξe(π) = diag(πe1+e3 , πe3 , πe2−e3). Hence

ξe(π)
� = diag(πe1+e2 , πe2 , πe1+e3 , πe3 , πe1+2e2 , πe1+e2+e3)

and we read off

|det ξe(π)�| sp = p−(4e1+5e2+3e3)s, ϑ(ξe(π)
�) = p10e1+12e2+8e3 .

Note that |α(ξe(π))|−1 = p〈α,ξe〉 = p〈α1,ξe〉 = pe1 and we can rewrite

wΞ+
w = {ξ ∈ Ξ | 〈αi, ξ〉 ≥ 0 for i ∈ {1, 2, 3}, and 〈α1, ξ〉 > 0 if w = w0},

since α1 ∈ w(Φ−) if and only if w �= 1. Thus we obtain

ZḢ,�,ϑ,p(s) =
∑
w∈W

p− len(w)
∑

ξ∈wΞ+
w

p〈α,ξ〉|det ξ(π)�| sp ϑ(ξ(π)�)

=
∑
w∈W

p− len(w)
∑
e∈N 3

0
with e1>0 if w �=1

p(11−4s)e1+(12−5s)e2+(8−3s)e3

=
1

(1 − p12−5s)(1 − p8−3s)

(
p0 · 1

1− p11−4s
+ p−1 · p11−4s

1− p11−4s

)
=

1 + p10−4s

(1 − p8−3s)(1− p11−4s)(1− p12−5s)
,
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proving Theorem 1.1. The first part of Corollary 1.2 follows directly from

well-known properties of the Riemann zeta function. For the assertion about

the asymptotic growth of pro-isomorphic subgroups in Γ, we use a Tauberian

theorem as recorded in [12, Thm. 4.20]. In the notation employed there, we

take a = 3, g(s) = ( 1
12 + g1(s))ζ(5s − 12)ζ(4s − 10)/ζ(8s − 20) with g1(s)

holomorphic such that g1(3) = 0, and w = 2 so that (1.4) holds for

ct2 =
g(a)

aΓ(w)
=

1
12

3Γ(2)

ζ(3)ζ(2)

ζ(4)
;

using the precise values Γ(2) = 1, ζ(2) = π2

6 and ζ(4) = π4

90 and the esti-

mate ζ(3) ≈ 1.202057 we arrive at the claimed description of the invariant ct2 .

5. The local pro-isomorphic zeta functions of the group Γt3

5.1. Counting points on a quadratic surface. In preparation for com-

puting the pro-isomorphic zeta function of the group Γt3 , we study a certain

arithmetic function. In order to make the analysis transferable to a more gen-

eral setting, considered in Section 7, we work over a compact discrete valuation

ring O with maximal ideal ℘ = πO and residue field O/℘ ∼= Fq of size q and

characteristic p. Our primary interest is in the basic set-up:

O = Zp, ℘ = pZp, Zp/pZp
∼= Fp.

Definition 5.1: For α, β,m ∈ N0 and an indeterminate t, let

f(α, β,m) = #{(x, y, z) ∈ (O/πm
O)3 | παx2 + πβyz = 0},

Fα,β(t) =
∞∑

m=0

f(α, β,m)tm,

and, for β ∈ N0, let

F 

0,β(t) =

∞∑
m=β

f(0, β,m)tm.

Observing that for α, β,m ∈ N0 one trivially has

(5.1) f(α+ 1, β + 1,m+ 1) = q3f(α, β,m),

we focus on the cases where either α or β is zero.
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Proposition 5.2: For α ∈ N0, we have

(i) Fα,0(t) = q2αtαF0,0(t) +
(1−qt)(1−q2αtα)

(1−q2t)2 ,

(ii) F0,α(t) = (q5t2)�α/2�F0,α(t) + (1 + q2t)1−q5�
α
2

�t2�
α
2

�

1−q5t2 ,

where α = 0 for α even and α = 1 for α odd. In particular,

F0,0(t) =
1− q2t2

(1− q2t)(1− q3t2)
and F0,1(t) =

1− 2q3t2 + q4t2

(1 − q2t)(1− q3t2)
.

To prove Proposition 5.2 we use the following recurrence relations. Parts (1)

and (2) of Lemma 5.3 below form the basis for the recursion in α, β given in (3)

and (4). Together with (5.1) they determine f(α, β,m) completely.

Lemma 5.3: For α, β,m ∈ N0 the following hold:

(1) f(0, 0,m+ 2) = q2(q2 − 1)q2m + q3f(0, 0,m),

(2) f(0, 1,m+ 2) = 2q3(q − 1)q2m + q3f(0, 1,m),

(3) f(0, β + 2,m+ 2) = q5f(0, β,m),

(4) f(α+ 1, 0,m+ 1) = q(q − 1)q2m + q2f(α, 0,m).

Proof. To prove (1), we observe that for the finite field Fq, the set of Fq-rational

points of the affine variety defined by x2 + yz, viz.

{(x, y,−y−1x2) | x ∈ Fq, y ∈ F×
q } ·∪{(0, 0, z) | z ∈ Fq},

has q2 points and is smooth away from the origin. By Hensel’s lemma each of

the (q2−1) smooth points lifts to q2(m+1) solutions of x2+yz = 0 over O/πm+2
O.

All the other solutions over O/πm+2
O are of the form (πx, πy, πz), thus x, y, z

are perturbations in O/πm+1
O of solutions modulo πm and the claim follows.

The argument for part (2) is similar, but as the Fq-points of the variety

defined by x2 + πyz ≡ x2 are all non-smooth, we consider higher levels. The

set of solutions of x2 + πyz = 0 in (O/πm+2
O)3 is a subset of the set

{(πx, y, z) ∈ (O/πm+2
O)3 | exactly one of y or z is a unit}

·∪{(πx, πy, πz) ∈ (O/πm+2
O)3 | x2 + πyz ≡ 0 mod πm}.

The number of solutions of the second type is q3f(0, 1,m). For the first type,

assuming that z is a unit and π | y, we are left to solve πx̃2 + ỹz ≡ 0 mod πm,

where x = πx̃ and y = πỹ. Note that ỹ is completely determined by x̃, z.

Counting in redundancy from the reduction, we find (q−1)q2m+3 solutions. By

symmetry, the total number of solutions for this type is 2(q − 1)q2m+3.
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To prove part (3) consider the equation x2+πβ+2yz = 0 over O/πm+2
O. Note

that a triple (x, y, z) is a solution if and only if x = πx̃, and the triple (x̃, y, z)

is a solution of the equation π2(x̃2 + πβyz) = 0 over O/πm+2
O. Thus

f(0, β + 2,m+ 2) = q5f(0, β,m),

where the factor q5 comes from the redundancy arising from the reduction

to x̃2 + πβyz ≡ 0 mod πm.

For part (4), to solve the equation πα+1x2 + yz = 0 over O/pm+1
O we con-

sider two cases: that y is divisible by π or that y is a unit. Using arguments

similar to those above, we find in the first case q2f(α, 0,m) solutions and in the

second q(q − 1)q2m solutions.

Proof of Proposition 5.2. We first compute F0,0(t). We multiply both sides of

equation (1) in Lemma 5.3 by tm+2 and sum over the non-negative integers to

obtain
∞∑

m=0

f(0, 0,m+ 2)tm+2 = q2(q2 − 1)

∞∑
m=0

q2mtm+2 + q3
∞∑

m=0

f(0, 0,m)tm+2.

Using the fact that f(0, 0, 0) = 1 and f(0, 0, 1) = q2 we get

F0,0(t)− 1− q2t =
q2(q2 − 1)t2

1− q2t
+ q3t2F0,0(t),

which implies the formula for F0,0(t). The derivation of F0,1(t) is similar.

To prove part (i) we multiply both sides of equation (4) in Lemma 5.3 by tm+1

and sum over the non-negative integers. This gives

∞∑
m=0

f(α+ 1, 0,m+ 1)tm+1

︸ ︷︷ ︸
Fα+1,0(t)−1

= q(q − 1)

∞∑
m=0

q2mtm+1 + q2
∞∑

m=0

f(α, 0,m)tm+1

︸ ︷︷ ︸
q2tFα,0(t)

,

and thus yields the recurrence

Fα+1,0(t) =
1− qt

1− q2t
+ q2tFα,0(t).

A recurrence of this form, namely, Aα+1 = d+ cAα (α ∈ N0), has the following

solution

(5.2) Aα = d
1− cα

1− c
+ cαA0, α ∈ N0,

which implies part (i) of the proposition.
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Similarly, to prove part (ii) we multiply both sides of equation (3) in Lem-

ma 5.3 by tm+2 and sum over the non-negative integers:

F0,α+2(t)− 1− q2t =
∞∑

m=0

f(0, α+ 2,m+ 2)tm+2

= q5
∞∑

m=0

f(0, α,m)tm+2 = q5t2F0,α(t).

We get the recurrence relation

F0,α+2(t) = 1 + q2t+ q5t2F0,α(t).

This is solved separately for even and odd α, via (5.2), giving

F0,α(t) = (1 + q2t)
1− q5�

α
2 �t2�

α
2 �

1− q5t2
+ (q5t2)�α/2�F0,α(t).

We need to pin down the variant F 

0,α(t) of F0,α(t), which was introduced in

Definition 5.1.

Lemma 5.4: For α ∈ N0, set α = 0 for α even and α = 1 for α odd. Then

F 

0,α(t) = (q5t2)�α/2�F 


0,α(t)

=

⎧⎨⎩q
5α
2 tαF0,0(t) = q

5α
2 tα 1−q2t2

(1−q2t)(1−q3t2) for α even,

q
5(α−1)

2 tα−1(F0,1(t)− 1) = q
5α−1

2 tα (1−qt)(1+q2t)
(1−q2t)(1−q3t2) for α odd.

Furthermore, employing another indeterminate Y , we have

∞∑
α=0

Y αF 

0,α(t) =

(1− qt)(1 + qt+ Y q2t(1 + q2t))

(1 − q5t2Y 2)(1 − p2t)(1− q3t2)
.

Proof. Multiplying both sides of equation (4) in Lemma 5.3 by tm+2 and sum-

ming over m ≥ α, we obtain

F 

0,α+2(t) =

∞∑
m=α

f(0, α+ 2,m+ 2)tm+2 = q5t2
∞∑

m=α

f(0, α,m)tm = q5t2F 

0,α(t).

Writing α = 2j + ε with ε ∈ {0, 1}, we deduce that

F 

0,2j+ε(t) = q5jt2jF 


0,ε(t).

By substituting F 

0,0(t) = F0,0(t) and F 


0,1(t) = F0,1(t) − 1 we arrive at the

desired formula.
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The last part follows by substituting the formulae obtained into

∞∑
α=0

Y αF 

0,α(t) =

∞∑
j=0

Y 2jF 

0,2j(t) +

∞∑
j=0

Y 2j+1F 

0,2j+1(t).

5.2. Applying a p-adic Bruhat decomposition. We now turn our attention

to the pro-isomorphic zeta function of the D∗-group Γ = Γt3 of Hirsch length 8,

defined in (1.3), and we prove Theorem 1.3.

Proposition 3.1 shows that ζ∧Γ,p(s) = ζ∧L,p(s) for all primes p, where L is the

Z-Lie lattice associated to Γ. In our setting, L is the Q-indecomposable D∗-Lie
lattice L of Z-rank 8, defined by (2.2) with respect to the Z-basis S, where

K =

⎛⎜⎝0 1 0

0 0 1

0 0 0

⎞⎟⎠
is the companion matrix of the primary polynomial ΔK = t2. We consider

the algebraic automorphism group G = Aut(L), with respect to the Z-basis

S∗ = (x1, y3, x2, y2, x3, y1, z2, z1) as in Corollary 2.7 and Example 2.9.

Let p be a prime; we will set about calculating the local pro-isomorphic zeta

function ζ∧L,p(s). In the notation of Section 3, we set

U1 = spanQp
{x1, y3, x2, y2, x3, y1} and U2 = spanQp

{z2, z1}.

We write

G = G(Qp), H = H(Qp), N = N(Qp);

these groups act on V = QpL = U1 ⊕U2. In accordance with Corollary 2.7, the

elements of the reductive subgroup H can be written in the form

(5.3)

⎛⎜⎜⎜⎜⎜⎝
ν−1A 0 0 0 0

0 A 0 0 0

0 0 νA 0 0

0 0 0 ν−1 detA 0

0 0 0 0 detA

⎞⎟⎟⎟⎟⎟⎠ ,

where (A, ν) ∈ GL2(Qp) × GL1(Qp); observe that we have performed a routine

reparametrisation ν �→ ν−1 and A �→ νA: for our computation of ϑ we prefer

to have the powers of ν appearing along the diagonal to be ‘small’.
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The description of the unipotent radical given in Example 2.9 shows that

elements of N are of the form

(5.4) u(B,C) =

⎛⎜⎜⎜⎜⎜⎝
I2 B C ∗ ∗
0 I2 B + λI2 ∗ ∗
0 0 I2 ∗ ∗
0 0 0 1 λ

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

where B,C ∈ M2(Qp) and λ ∈ Qp with tr(B) = 0, tr(C)+det(B) = 0, and there

are arbitrary entries in the positions marked ∗. As explained in Section 3, we

can utilise Proposition 3.3 and Theorem 3.6 to compute ζ∧L,p(s) via an integral

over H+.

We now return to our coarse decomposition and set about calculating the

functions ϑ0, ϑ1 defined in Section 3; we refer to Section 3.2 for definitions

of N1, μN/N1
and μN1 . Noting that N1

∼= Q 8
p , we obtain for h ∈ H+ of the

form (5.3)

ϑ1(h) = |ν−1 detA2|−6
p = |detA|−12

p |ν| 6p ,
hence ϑ(h) = ϑ0(h)ϑ1(h) = ϑ0(h)|detA|−12

p |ν| 6p . We defer until the next section

a calculation of ϑ0, since this is the most involved and lengthy aspect of the

analysis.

We observe that the morphism

� : Ḣ = GL2 × GL1 → H, (A, ν) �→ diag(ν−1A,A, νA, ν−1 detA, detA)

induces a measure-preserving isomorphism Ḣ = Ḣ(Qp) → H such that

H+�−1 = {(A, ν) | vp(A) ≥ 0 and vp(A)− |vp(ν)| ≥ 0},
where vp is defined as in Example 3.8 and in Section 4. Thus we obtain

(5.5) ζ∧L,p(s) =

∫
(A,ν)∈Ḣ

with vp(A)≥0,
vp(A)+|vp(ν)|≥0

|detA| 5s−12
p |ν|−s+6

p ϑ0((A, ν)
�) dμp(A, ν).

For convenience, we consider Ḣ = GL2×GL1 as a subgroup of GL3, embedded

as block matrices via (A, ν) �→ diag(A, ν). In particular,

T = T(Qp) = {diag(λ1, λ2, ν) | λ1, λ2, ν ∈ Q×
p }

is a maximal torus in Ḣ.
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By Proposition 3.7 we obtain

ζ∧L,p(s) =
∑
w∈W

p− len(w)
∑

ξ∈wΞ+
w

|α(ξ(π))|−1
p |det(ξ(π)�)| sp ϑ(ξ(π)�),

where we choose α ∈ Hom(T,Gm), α(diag(λ1, λ2, ν)) = λ1λ
−1
2 as the single

positive root, and we have

wΞ+
w = {ξ ∈ Ξ+ | α(ξ(π)) ∈ Zp, and α(ξ(π)) ∈ pZp if w = w0},

where the Weyl group is W = {1, w0}. In order to describe the set wΞ+
w we

will need to consider dominant weights for the contragredient representation,

following [14]. These are given by

ω−1
1 (h) = λ2ν

−1, ω−1
2 (h) = λ2, ω−1

3 (h) = λ2ν,

ω−1
4 (h) = λ1λ2ν

−1, ω−1
5 (h) = λ1λ2

for h = diag(λ1, λ2, ν) ∈ T . It follows that α, ω−1
1 , ω−1

2 form a Z-basis for

Hom(T,Gm). Unlike the situation in Section 4, the N0-span of these three

dominant weights does not contain all the weights of �. In the current situation

an element h ∈ T is integral if and only if α(h), ω−1
1 (h), ω−1

2 (h), ω−1
3 (h) all lie

in Zp. Note that ω−1
3 = ω1ω

−2
2 . We rewrite α1 = α, α2 = ω−1

1 , α3 = ω−1
2 and

seek a dual basis, namely elements ξ1, ξ2, ξ3 ∈ Ξ such that

〈αi, ξj〉 =
⎧⎨⎩1 if i = j,

0 if i �= j.

A routine calculation shows that the following elements suffice:

ξ1(τ) = (τ, 1, 1), ξ2(τ) = (1, 1, τ−1), ξ3(τ) = (τ, τ, τ) for τ ∈ Q×
p .

A general element of Ξ has the form ξe = ξ e1
1 ξ e2

2 ξ e3
3 with e = (e1, e2, e3) ∈ Z3

and then

(5.6) ξe(π) = diag(πe1+e3 , πe3 , πe3−e2).

Hence

ξe(π)
� = diag(πe1+e2 , πe2 , πe1+e3 , πe3 , πe1−e2+2e3 , π−e2+2e3 , πe1+e2+e3 , πe1+2e3 )

and we read off

|det ξe(π)�| sp = p−(5e1+e2+9e3)s, ϑ1(ξe(π)
�) = p12e1+6e2+18e3 .
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Note that |α(ξe(π))|−1 = p〈α,ξe〉 = p〈α1,ξe〉 = pe1 and we can rewrite

wΞ+
w={ξ∈Ξ | 〈αi, ξ〉≥0 for i∈{1, 2, 3}; 〈ω−1

3 , ξ〉≥0, and 〈α1, ξ〉>0 if w=w0}
= {ξe | ei ≥ 0 for i ∈ {1, 2, 3}; 2e3 ≥ e2, and e1 > 0 if w = w0},

since α1 ∈ w(Φ−) if and only if w �= 1 and ω−1
3 = ω1ω

−2
2 = α−1

2 α2
3. Writing

(5.7) C = {e ∈ N 3
0 | 2e3 ≥ e2}

we obtain

(5.8)

ZḢ,�,ϑ,p(s)

=
∑
w∈W

p− len(w)
∑

ξ∈wΞ+
w

p〈α,ξ〉 |det ξ(π)�| sp ϑ(ξ(π)�)

=
∑
w∈W

p− len(w)
∑

e∈C with
e1>0 if w �=1

p(13−5s)e1+(6−s)e2+(18−9s)e3ϑ0(ξe(π)
�).

5.3. Determining the function ϑ0. In view of (5.3) and (5.8), we need only

compute ϑ0 for elements of H of a rather special form; for n,m, k ∈ Z we set

ϑ0(π
n, πm, πk) = ϑ0(diag(π

n, πm, πk)�)

= ϑ0(diag(π
n−k, πm−k, πn, πm, πn+k, πm+k, πm+n−k, πm+n)),

where the first expression is a mild, but convenient abuse of notation. Recall

that we could choose π = p, but prefer to make clear the different roles played by

π and p. This is beneficial also with a view toward the more general situation

considered in Section 7; we refrain from generalising all the notation in the

current section as we did in Section 5.1, but explain in Remark 5.7 how one

particular step carries over. We assume throughout that n ≥ m since this is

the only case of interest to us; see (5.6). Write l = n−m ∈ N0, and recall from

Definition 5.1 with O = Zp that

f(α, β,m) = #{(x, y, z) ∈ (Zp/π
mZp)

3 | παx2 + πβyz = 0}

for α, β,m ∈ N0.
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Lemma 5.5: For n,m, k ∈ Z with l = n−m ≥ 0, we have

ϑ0(π
n, πm, πk) = p4k+3m+n ϑ̃(πn, πm, πk),

where ϑ̃(πn, πm, πk) equals

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p3k+lf(l, 0,m− k) if k ≥ 0 (Case 1),

p−k+lf(2k+l, 0,m+k) if max{−m,−l}≤k<0 and 2k+l≥0 (Case 2a),

p5k+4lf(0,−2k−l,m−k−l) if max{−m,−l}≤k<0 and 2k+l<0 (Case 2b),

p−lf(0, l, n+ k) if −m ≤ k < −l (Case 3).

Remark 5.6: It follows from Lemma 5.5 that ϑ : H → R>0 is not a character.

For instance,

ϑ̃(π2, π2, 1) = f(0, 0, 2) = p4 + p3 − p2 �= p4 = f(0, 0, 1)2 = ϑ̃(π, π, 1)2.

In fact, this calculation shows that the lifting condition [14, Assumption 2.3]

fails for all primes p. Suppose that the lifting condition were to hold. By [4,

Lem. 3.12], it would follow that ϑ is a character on subsets of a maximal torus

of H with a designated ordering of valuations along the diagonal. It is readily

seen that the elements diag(π2, π2, 1)�, diag(π, π, 1)� belong to such a subset.

Proof of Lemma 5.5. We consider the action of a diagonal element

h = diag(πn−k, πm−k, πn, πm, πn+k, πm+k, πm+n−k, πm+n)

on an element

(5.9) u =

⎛⎜⎜⎜⎜⎜⎝
I2 ( a b

c −a ) ( d e
f a2+bc−d ) ∗ ∗

0 I2 ( λ+a b
c λ−a ) ∗ ∗

0 0 I2 ∗ ∗
0 0 0 1 λ

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

the latter being an explicit parametrisation of (5.4). The situation of interest

to us, i.e., when h is integral, is equivalent to the conditions n ≥ m ≥ |k|. We
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obtain the following necessary and sufficient conditions for uh to be integral:

vp(a) ≥ −m,(5.10)

vp(b) ≥ −m+max{0,−k},(5.11)

vp(c) ≥ −n+max{0,−k},(5.12)

vp(d) ≥ −n− k,(5.13)

vp(e) ≥ −m− k,(5.14)

vp(f) ≥ −n− k,(5.15)

vp(a
2 + bc− d) ≥ −m− k,(5.16)

vp(λ + a) ≥ −n− k,(5.17)

vp(λ − a) ≥ −m− k,(5.18)

vp(λ) ≥ −m− n.(5.19)

Condition (5.19) is implied by conditions (5.10) and (5.18); it is therefore re-

dundant. One readily sees the following equivalences:

(5.13) : vp(d) ≥ −n− k ⇐⇒ vp(a
2 + bc) ≥ −n− k, if (5.16) holds;

(5.17) : vp(λ+ a) ≥ −n− k ⇐⇒ vp(2a) ≥ −n− k, if (5.18) holds;

so we may replace (5.13) and (5.17) respectively by

vp(a
2 + bc) ≥ −n− k,(5.13)

′

vp(a) ≥ −n− k − δ,(5.17)
′

where δ = vp(2) ∈ {0, 1} takes the value 1 for p = 2 and the value 0 otherwise.

In our calculation we use the fact that the measure μN/N1
may be treated as

an additive measure on the parameter space Q 7
p with (N/N1)(Zp) corresponding

to Z 7
p . Indeed, using the notation introduced in (5.4), we see that the map

M2(Qp)× sl2(Qp) → N/N1(Qp), (X,Y ) �→ u(X,Y )

is a homeomorphism. The claim thus follows from [26, Thm. 8.32] and the fact

that the groups involved are unimodular.

For fixed parameters (a, b, c) ∈ Q 3
p , we obtain

μQ 4
p
{(d, e, f, λ) ∈ Q 4

p | (5.14), (5.15), (5.16), (5.18) hold} = p3m+n+4k.

It follows that ϑ0(π
n, πm, πk) = p3m+n+4k ϑ̃(πn, πm, πk), where

ϑ̃(πn, πm, πk) = μQ 3
p
{(a, b, c)∈Q 3

p | (5.10), (5.11), (5.12), (5.13)′, (5.17)′ hold}.
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For convenience, we summarise the conditions (5.10), (5.11), (5.12), (5.13)′

and (5.17)
′
:

(†)
vp(a) ≥ max{−m,−n− k − δ}, vp(b) ≥ −m+max{0,−k},
vp(c) ≥ −n+max{0,−k}, vp(a

2 + bc) ≥ −n− k.

The next step is to show that we can drop δ, even for p = 2. Suppose for

a contradiction, that there are a, b, c ∈ Qp satisfying (†) and such that

vp(a) = −n− k − 1 ≥ −m; in particular, k < 0. Then

vp(a
2) = −2n− 2k − 2 < −n− k

and we conclude from (5.13)′ that vp(bc) = vp(a
2) = −2n − 2k − 2. On

the other hand (5.11) and (5.12) yield vp(bc) ≥ −n − m − 2k. This gives

−2n− 2k − 2 ≥ −n−m− 2k, hence m− 2 ≥ n, a contradiction.

Remark 5.7: The last consideration carries through also in a more general set-

ting, considered in Section 7. If we work over a compact discrete valuation

ring O with valuation v℘, replacing Zp with valuation vp, then δ = v℘(2). If O

has residue characteristic 2 this is the absolute ramification index of O, and the

assumption v℘(a) = −n − k − δ̄ ≥ −m with δ̄ ∈ {1, . . . , δ} leads again to a

contradiction.

Thus we can work with the simpler set of conditions

(‡)
vp(a) ≥ max{−m,−n− k}, vp(b) ≥ −m+max{0,−k},
vp(c) ≥ −n+max{0,−k}, vp(a

2 + bc) ≥ −n− k.

We perform a change of variables Q 3
p → Q 3

p by

(a, b, c) �→ (x, y, z) = (apmin{m,n+k}, bpm+min{0,k}, cpn+min{0,k}).

The new variables are all unconstrained elements of Zp, and the change of

variables introduces a Jacobian equal to

pmin{m,n+k}+m+n+min{0,2k}.

It follows that

ϑ̃(πn, πm, πk)

=μQ 3
p
{(a, b, c) ∈ Q 3

p | (‡) holds}
=pmin{m,n+k}+m+n+min{0,2k}

· μZ 3
p
{(x, y, z)∈Z 3

p |p−2min{m,n+k}x2 + p−m−n−min{0,2k}yz≡0 mod p−n−k}.
Lemma 5.5 now follows immediately by specialising to the four cases.
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In order to continue the calculation paused at (5.8), we recall that

ξe = ξ e1
1 ξ e2

2 ξ e3
3

and, setting

(5.20) ne = e1 + e3, me = e3, ke = e3 − e2, thus le = ne −me = e1,

we see from (5.6) that ξe(π) = diag(πe1+e3 , πe3 , πe3−e2) = diag(πne , πme , πke).

Applying Lemma 5.5 and using (5.20) to resubstitute, we obtain

(5.21) ϑ0(ξe(π)
�) = pe1−4e2+8e3 ϑ̃(ξe(π)),

where

ϑ̃(ξe(π))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pe1−3e2+3e3f(e1, 0, e2)

if e2 ≤ e3 (Case 1),

pe1+e2−e3f(e1 − 2e2 + 2e3, 0,−e2 + 2e3)

if e3 < e2 ≤ e3+min{e1, e3} and 2e2 ≤ e1 + 2e3 (Case 2a),

p4e1−5e2+5e3f(0,−e1 + 2e2 − 2e3,−e1 + e2)

if e3 < e2 ≤ e3+min{e1, e3} and e1 + 2e3 < 2e2 (Case 2b),

p−e1f(0, e1, e1 − e2 + 2e3)

if e1 + e3 < e2 ≤ 2e3 (Case 3).

Referring to (5.8), we obtain

(5.22) ZḢ,�,ϑ,p(s) =
∑
w∈W

p− len(w)
∑

e∈C with
e1>0 if w �=1

Xe1
1 X

e2
2 X

e3
3 ϑ̃(ξe(π)),

where

X1 = p14−5s, X2 = p2−s, X3 = p26−9s.

5.4. Decomposing the polyhedral cone. In preparation of the final stage

of the calculation, we consider the following subsets of the ‘integral’ cone C

introduced in (5.7); each subset is, in fact, a submonoid of N 3
0 . Refer to Figure 1

for a pictorial illustration.
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Figure 1. Decomposition of the cone C.

Definition 5.8: Write

v1 = (1, 0, 0), v2 = (0, 2, 1), v3 = (0, 0, 1),

v4 = (0, 1, 1), v5 = (2, 2, 1), v6 = (1, 2, 1),

and set

Cijk = spanN0
{vi,vj ,vk} for 1 ≤ i, j, k ≤ 6,

Cijk+ = spanN0
{vi,vj}+ Nvk for 1 ≤ i, j, k ≤ 6,

Cij = spanN0
{vi,vj} for 1 ≤ i, j ≤ 6,

Cij+ = N0vi + Nvj for 1 ≤ i, j ≤ 6,

C0
∗ = {(e1, e2, e3) ∈ C∗ | e1 > 0} for any (possibly empty) index ∗.

Observation 5.9: The elements v1,v2,v3 are the completely fundamental ele-

ments of C, while v4 = 1
2 (v2 + v3) is merely fundamental; compare with [31,

Chap. I]. A routine verification shows that

C134 = {(e1, e2, e3) ∈ C | e2 ≤ e3},
C145+ = {(e1, e2, e3) ∈ C | e3 < e2 ≤ e3 +min{e1, e3}, 2e2 ≤ e1 + 2e3},
C456+ = {(e1, e2, e3) ∈ C | e3 < e2 ≤ e3 +min{e1, e3}, e1 + 2e3 < 2e2},
C462+ = {(e1, e2, e3) ∈ C | e1 + e3 < e2 ≤ 2e3};
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hence the sets C134, C145+ , C456+ , C462+ correspond precisely to Cases 1, 2a, 2b

and 3 in Lemma 5.5; compare with (5.21).

The following decompositions are easily verified:

(5.23)
C=C134 ·∪C145+ ·∪C456+ ·∪C462+ , C0=C0

134 ·∪C0
145+ ·∪C0

456+ ·∪C0
462+ ,

C234=C34 ·∪C42+ , C=C0 ·∪C234.

For convenience, for a subset Cijk ⊆ C write

Zijk(s) =
∑

e∈Cijk

Xe1
1 X

e2
2 Xe3

3 ϑ̃(ξe(π))

and adopt a similar shorthand notation for subsets of the form Cijk+ ,Cij ,Cij+ .

From (5.22) and (5.23) we deduce that

(5.24)

ZḢ,�,ϑ,p(s) =
∑
e∈C

Xe1
1 Xe2

2 X
e3
3 ϑ̃(ξe(π)) + p−1

∑
e∈C0

Xe1
1 X

e2
2 X

e3
3 ϑ̃(ξe(π))

=(1 + p−1)
∑
e∈C

Xe1
1 X

e2
2 Xe3

3 ϑ̃(ξe(π)) − p−1Z234(s)

=(1 + p−1)(Z134(s) + Z145+(s) + Z456+(s) + Z462+(s))

− p−1(Z34(s) + Z42+(s)).

Lemma 5.10: Referring to Definition 5.1, we have

Z134(s) =
1

1− p3X3

∞∑
i=0

(pX1)
iFi,0(X2X3),

Z145+(s) =
p3X2

1X
2
2X3

1− p3X2
1X

2
2X3

∞∑
i=0

(pX1)
iFi,0(X2X3),

Z456+(s) =
1

1− p3X2
1X

2
2X3

∞∑
i=1

(p−1X1X2)
iF ∗

0,i(X2X3),

Z462+(s) =
X2

2X3

1−X2
2X3

∞∑
i=0

(p−1X1X2)
i F ∗

0,i(X2X3),

Z34(s) =
1

1− p3X3
F0,0(X2X3),

Z42+(s) =
X2

2X3

1−X2
2X3

F0,0(X2X3).
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Proof. The description appearing immediately after (5.21) provides explicit

formulae for ϑ̃(ξe(π)) in each of the Cases 1, 2a, 2b and 3 which, by Re-

mark 5.9, correspond to the subcones C134,C145+ ,C456+ and C462+ respectively.

The sets C34 and C42+ correspond to parts of Cases 1 and 3 respectively. The

calculations are all similar; we show one of them. Elements of e ∈ C134 can be

expressed in the form e = r1v1 + r3v3 + r4v4, where r1, r3, r4 ∈ N0, so that

e = (e1, e2, e3) = r1v1 + r3v3 + r4v4 = (r1, r4, r3 + r4).

From this we obtain

Z134(s) =
∑

e∈C134

Xe1
1 X

e2
2 Xe3

3 ϑ̃(ξe(π))

=
∑

e∈C134

Xe1
1 X

e2
2 Xe3

3 pe1−3e2+3e3 f(e1, 0, e2)

=
∑

r1,r3,r4≥0

(pX1)
r1 (p3X3)

r3 (X2X3)
r4 f(r1, 0, r4)

=
1

1− p3X3

∞∑
i=0

(pX1)
i Fi,0(X2X3).

Explicit formulae for the expressions in Lemma 5.10 can now be obtained via

Proposition 5.2 and Lemma 5.4. Substituting these into (5.24) yields

(5.25)

ZḢ,�,ϑ,p(s)

=
(1− pX2X3)

(1−pX1)(1−p3X3)(1−X2
2X3)(1−p2X2X3)(1−p3X2

1X
2
2X3)

× (−p4X3
1X

3
2X

2
3 − p3X3

1X
2
2X3

−p4X2
1X

3
2X

2
3−pX2

1X
2
2X3+p

3X1X2X3+X1+pX2X3+1).

Recalling that X1 = p14−5s, X2 = p2−s, X3 = p26−9s we obtain

ζ∧Γt3 ,p
(s) =

(1− p29−10s)

(1− p15−5s)(1− p29−9s)(1− p30−11s)(1− p30−10s)(1− p61−21s)

×(−p104−36s−p90−31s−p75−26s−p59−21s+p45−15s+p29−10s+p14−5s+1)

=
(1− p29−10s)

(1− p15−5s)2(1− p29−9s)(1− p30−11s)(1− p61−21s)

×(−p89−31s−p75−26s+p74−26s−p59−21s+p30−10s−p15−5s+p14−5s+1),

proving Theorem 1.3.
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6. Meromorphic continuation for the pro-isomorphic zeta function

of Γt3

In this section we consider the pro-isomorphic zeta function of the D∗-group
Γ = Γt3 of Hirsch length 8, defined in (1.3). Our task is to deduce the assertions

about ζ∧Γ (s) in Corollary 1.4 from the Euler product decomposition (1.1) and

the explicit description of the local zeta functions in Theorem 1.3. The main

step is to establish that the line {s ∈ C | Re(s) = 3} is a natural boundary

for the meromorphic continuation of ζ∧Γ (s). We follow the strategy laid out

in [15, Chap. 5] and use a compatible notation; in the terminology of [15], we

are dealing with a Type II situation, which requires approximations up to terms

of degree 3, as we shall see.

Theorem 1.3 shows that

(6.1) ζ∧Γ (s) =
ζ(5s− 15)2ζ(9s− 29)ζ(11s− 30)ζ(21s− 61)

ζ(10s− 29)
ψ(s),

where ζ(s) denotes the Riemann zeta function and

(6.2) ψ(s) =
∏
p

W̃ (p, p−s)

for

W̃ (X,Y )=1+X14Y 5−X15Y 5+X30Y 10−X59Y 21+X74Y 26−X75Y 26−X89Y 31,

as in the statement of Corollary 1.4. It is routine to check that the infinite

product in (6.2) converges absolutely for all s ∈ C with

Re(s) > max{15/5, 16/5, 31/10, 60/21, 75/26, 76/26, 90/31}= 16/5

and yields a holomorphic function on {s ∈ C | Re(s) > 16/5}. In passing, we

observe that the abscissa of convergence of the Dirichlet generating series ζ∧Γ (s),
which has non-negative coefficients, can be detected by looking for the right-

most singularity on the real line; from (6.1) we see that this singularity lies

at s = 30/9 = 10/3 and yields a simple pole.

Next we show that the function ψ(s), and thus ζ∧Γ (s), can be meromorphically

continued further to the right-half plane H = {s ∈ C | Re(s) > 3}. Indeed,

the cyclotomic polynomial 1 − t + t2 does not vanish at t = p15−5s for s ∈ H,
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because |p15−5s| < 1. We consider

(6.3)

ψ̃(s) =
∏
p

W̃ (p, p−s)

1− p15−5s + p30−10s

=
∏
p

(
1 +

p14−5s − p59−21s + p74−26s − p75−26s − p89−31s

1− p15−5s + p30−10s

)
;

this infinite product converges absolutely and yields a holomorphic function

for s ∈ H, because

max{15/5, 60/21, 75/26, 76/26, 90/31}= 3.

As 1− t+ t2 = (1 − t6)(1− t)(1 − t2)−1(1− t3)−1, we see that

ψ(s) =
ζ(10s− 30)ζ(15s− 45)

ζ(30s− 90)ζ(5s− 15)
ψ̃(s), for s ∈ H,

yields the desired meromorphic continuation. Furthermore, using a Tauberian

theorem [12, Thm. 4.20] as in the proof of Corollary 1.2, we obtain the descrip-

tion of the asymptotic growth of pro-isomorphic subgroups in Γt3 as recorded

in Remark 1.5.

It remains to show that the line L = {s ∈ C | Re(s) = 3} is a natural

boundary for ψ(s); in view of (6.1), this implies that L is also a natural bound-

ary for ζ∧Γ (s) and Corollary 1.4 follows. The strategy is to show that each

point s ∈ L is a limit point of zeros of the meromorphic function ψ(s), de-

fined on H; since poles and zeros of the Riemann zeta function are isolated, it

suffices to show that each s ∈ L is a limit point of zeros of the holomorphic

function ψ̃(s), defined on H. Recall from (6.3) that ψ̃(s) is given as an infinite

product, indexed by p; thus ψ̃(s) vanishes, for any given s ∈ H, if and only

if W̃ (p, p−s) vanishes for at least one prime p.

This leads us to study the zeros of the polynomial

F (V, U) = 1 + (V − 1)U5 + U10 − V 4U21 + (V 4 − V 3)U26 − V 4U31 ∈ Z[V ][U ].

Observe that F (X−1, X3Y ) = W̃ (X,Y ); we will be interested in evaluating F

at V = p−1 → 0, as the prime p tends to infinity, and U = p3−s, for suit-

able s ∈ H depending on p. We see that

F (0, U) = 1− U5 + U10

is a product of the 6th and the 30th cyclotomic polynomial. We fix the primi-

tive 6th root of unity λ = exp(πi/3) = (1+
√
3 i)/2 so that λ is a root of 1−t+t2,
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and we fix the primitive 30th root of unity ω = exp(πi/15) so that ω is a root of

F (0, U). By the Holomorphic Implicit Function Theorem, there is a holomor-

phic function u = u(v), defined in a small complex neighbourhood of v = 0, such

that u(0) = ω and F (v, u(v)) = 0; furthermore, being analytic, this function

admits a local representation as a power series

u(v) = ω (1 + a1v + a2v
2 + a3v

3 + · · · )
in v with uniquely determined complex coefficients. A routine power series

calculation and comparison of coefficients yield

a1 =
1

15
(2λ− 1), a2 =

1

152
(1− 5λ), a3 =

1

153
(−17− 450ω+49ω5+225ω6).

Writing u(v) = p3−s and v = p−1, for sufficiently large p, we solve for s ∈ C to

obtain a set

Np=H∩
{
3− log(ω)

log(p)︸ ︷︷ ︸
∈Ri

− log(1 + a1p
−1 + a2p

−2 + a3p
−3 + · · · )

log(p)︸ ︷︷ ︸
(∗)

− 2πk

log(p)
i︸ ︷︷ ︸

∈Ri

| k∈Z

}

of zeros of ψ(s), where k is a parameter that we can use, for increasing p, to

approximate any given point on the line L to any required degree. However, we

still need to verify that, for sufficiently large p, the real part of the numerator

in (∗) is negative so that the resulting candidate zero lies in H, as required.

Using the logarithm series

log(1 + t) = t− 1

2
t2 +

1

3
t3 − · · ·

for small t = a1p
−1 + a2p

−2 + a3p
−3 + · · · , we see that the relevant numerator

in (∗) is

(6.4) a1︸︷︷︸
∈Ri

p−1 +
(
a2 − 1

2
a 2
1

)
︸ ︷︷ ︸

∈Ri

p−2 +
(
a3 − a1a2 +

1

3
a 3
1

)
︸ ︷︷ ︸
has negative real part

p−3 +Ω(p−1),

where Ω(v) is a complex power series in v starting with v4 or some higher term.

Indeed, short calculations yield

a1=
1

15
(2λ−1) =

1

15

√
3 i ∈ Ri and a2−1

2
a 2
1 =

1

152

(5
2
−5λ

)
=

−1

90

√
3 i ∈ Ri.

Furthermore, a slightly longer, but routine calculation gives

a3−a1a2+ 1

3
a 3
1 =

1

153
(−25+50λ+152(λ− 2)ω) =

1

135
(−1−18ω+2ω5+9ω6)
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and, since Re(ω) > Re(ω5) > Re(ω6), we deduce that

Re
(
a3 − a1a2 +

1

3
a 3
1

)
< 0

as asserted. For sufficiently large p, the contribution of Ω(p−1) in (6.4) is much

smaller than the p−3-term; hence Np supplies the required zeros of ψ(s).

7. Base extensions

Following a suggestion of the referee, we extend in this section our results for

the Q-indecomposable D∗-groups Γt2 and Γt3 to two infinite families of class-

two nilpotent groups that result naturally from the initial groups via ‘base

extensions’ of the corresponding Lie lattices; for completeness, we also discuss

what happens if we start with the decomposable D∗-group Γt. The outcome

illustrates that the investigation in [8], which was carried out partly after, partly

in parallel to our original work, has an impact in the situation that we consider

in this paper. We exercise some care not to exclude any primes; this allows

us to get explicit results in the global setting. In a nutshell we will see that

the calculations carried out in Sections 4 and 5 require only mild modifications,

once the relevant algebraic automorphism groups are understood. In particular,

we establish Theorem 1.6.

We briefly set up the scene. Let L be a nilpotent Z-Lie lattice; our main

interest will be in L = Ltm , the Lie lattice associated to the nilpotent group Γtm

with presentation (1.3), with an extra focus on m ∈ {2, 3}. We consider a

number field k of absolute degree d = [k : Q], with ring of integers o. By

extension of scalars from Z to o and restriction of scalars back to Z, we obtain

a Z-Lie lattice L̃ = Z,oL of Z-rank dimZ(L̃) = d dimZ(L). Clearly, L̃ is nilpotent,

of the same class as L.

Automorphisms of L induce in a natural way automorphisms of L̃, but, in

general, the automorphism group of L̃ may turn out considerably more ‘com-

plex’ than that of L. Consequently, the pro-isomorphic zeta functions of L̃ and

of L may bear little resemblance to one another. Our aim in this section is

to show that Lie lattices of the form L = Ltm , for m ∈ N≥2, are sufficiently

‘rigid’ so that Aut(L̃) is strongly linked to Aut(L), in an appropriate local

sense. For m ∈ {2, 3}, this allows us to determine the local pro-isomorphic zeta

functions ζ∧
˜L,p

(s) = ζ iso
˜Lp
(s) for all primes p and, via the Euler product (1.1),

we deduce analytic properties of the pro-isomorphic zeta function ζ∧
˜Γ
(s) of the
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class-two nilpotent group Γ̃ associated to L̃; compare with Section 3.1. The Lie

lattice Lt is not quite ‘rigid’, but a slight modification of the approach in [8] al-

lows us to bypass the problem and we obtain the local and global pro-isomorphic

zeta functions also in this basic case.

7.1. Local rigidity of the Lie lattices Ltm for m ≥ 2. As above, let

L̃ = Z,oL denote the Z-Lie lattice associated, via ‘base extension’, to a Z-Lie

lattice L and a number field k with ring of integers o. Fix a rational prime p,

and recall that there are finitely many non-archimedean primes p ∈ Spec(o)

dividing p. It is well known that there is a natural ring isomorphism

Zpo=Zp ⊗Z o∼=
∏
p|p

op,

where op denotes the completion of o at the prime p. From this one sees

that the Zp-Lie lattice L̃p = Zp ⊗Z L̃, relevant to our investigation, is iso-

morphic to
⊕

p|p L̃p, where L̃p = Zp,opLp denotes the Zp-Lie lattice that results

from Lp = Zp ⊗Z L via extension of scalars to the complete valuation ring op

and restriction back to Zp.

This prompts us to consider the Zp-Lie lattice L̃℘ = Zp,OLp, for any given fi-

nite extension F of Qp, with valuation ring O and valuation ideal ℘.

Write G̃℘ = Aut(L̃℘) and Gp = Aut(Lp) for the algebraic automorphism

groups of the Zp-Lie lattices L̃℘ and Lp. Here Gp is simply the Zp-group

scheme that results from the algebraic automorphism group G = Aut(L) of

the original Z-Lie lattice via base change: any Z-basis S of L naturally iden-

tifies a Zp-basis of Lp, and via S we realise Gp ≤ GLn as an affine Zp-group

scheme, for n = dimZ(L) = dimZp(Lp). In the following we write G in place

of Gp, when the base ring is insignificant. Moreover, tensoring S with a Zp-

basis of O, we obtain a Zp-basis S̃ of L̃℘, which allows us to realise G̃℘ ≤ GLnd

as an affine Zp-group scheme, where d = dimZp(O) = [F : Qp]. Our explicit

construction yields, in particular,

G(O) ∼= Aut(OLp) ≤ Aut(Zp,OLp) ∼= G̃℘(Zp),

G(F) ∼= Aut(FLp) ≤ Aut(Qp,FLp) ∼= G̃℘(Qp).

Typically, these embeddings are proper, because Zp-linear automorphisms are

not necessarily O-linear. Suppose that L, hence also Lp, is nilpotent of class 2.

In this situation we can easily make out two types of automorphisms, which
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could be used to fill this gap: central automorphisms and field automorphisms.

More precisely, we set

J℘ = C
˜G℘

(L̃℘/Z(L̃℘)) = ker(Aut(L̃℘) → Aut(L̃℘/Z(L̃℘))) � G̃℘,

the affine Zp-group scheme which is the algebraic centraliser of the Zp-module

L̃℘/Z(L̃℘). For the concrete realisation as a subgroup scheme in GLnd, it is

convenient to choose the underlying Zp-basis S in such a way that it includes a

Zp-basis for Z(Lp); then S̃ includes a Zp-basis for Z(L̃℘) and J℘ can be defined

rather directly. In addition, we consider the algebraic automorphism group of

the extension F |Qp as a subgroup scheme of Aut(L̃℘), that is the finite group

scheme

F℘ ≤ G̃℘ with F℘
∼= Aut(O |Zp) ∼= Aut(F |Qp)

such that, in particular, F℘(Zp) ∼= Aut(O |Zp) ∼= Aut(F |Qp) acts naturally via

field automorphisms on the Lie lattice L̃℘. Furthermore, we observe that G,

now regarded as an affine O-group scheme, serves as the algebraic automor-

phism groupAut(OLp) of the O-Lie lattice OLp; accordingly, the affine Zp-group

scheme ResO |Zp
(G) which results via restriction of scalars can be realised as a

subgroup scheme of G̃℘. We are interested in situations where the following

‘rigidity’ holds:

(7.1) (J℘ ·ResO|Zp
(G))�F℘=G̃℘ as Qp-defined algebraic subgroups of GLnd.

Actually, for us it suffices that the two group schemes yield the same groups

of Qp-rational points; this condition is slightly weaker, but implies, for in-

stance, that the two Qp-algebraic groups have the same connected compo-

nent. In down-to-earth terms we require that the F- and thus also Qp-Lie

algebra L̃ = FLp = F ⊗Zp Lp satisfies

(7.2) (CAutQp (
˜L)(L̃/Z(L̃)) AutF(L̃))�Aut(F |Qp) = AutQp(L̃).

In [8], Berman, Glazer and Schein extend results of Segal [30] for algebraic

automorphism groups of certain Lie algebras, with a view toward studying pro-

isomorphic zeta functions under ‘base extensions’. In particular, they formulate

sufficient conditions under which (7.1) holds true; see [8, Thm. 3.9]. For the dis-

cussion at hand, a special and thus simpler version of their criterion is sufficient.

We say that the Qp-Lie algebra QpL
∼= QpLp is absolutely indecomposable

if, for every finite extension F of Qp, the F-Lie algebra FL ∼= FLp is indecom-

posable. We make use of the following special instance of [8, Thm. 3.9].
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Lemma 7.1: Let L be a class-two nilpotent Z-Lie lattice, as above, and such

that [L,L] = Z(L). Let p be a prime such that the Qp-Lie algebra L = QpLp is

absolutely indecomposable and generated by

Y = {w ∈ L� Z(L) | CL(CL(w)) = Qpw + Z(L)}.

Then (7.1) holds, for every finite extension F of Qp, with valuation ring O and

valuation ideal ℘.

Next we consider the Z-Lie lattices Ltm , m ∈ N, associated to the D∗-groups
Γtm with presentation (1.3). This means that Ltm has Z-rank 2m+2 and admits

the presentation

(7.3)

Ltm =〈x1, . . . ,xm, y1, . . . , ym, z1, z2 |
[xi, yj ] = δi,jz1 + δi+1,jz2,

[xi, xj ] = [yi, yj] = [xi, z1] = [xi, z2] = [yi, z1]=[yi, z2]=0

for 1≤ i, j≤m〉,

a special instance of (2.2). Furthermore, Z(L) = Zz1 + Zz2, and [L,L] = Z(L)

for m ≥ 2.

Lemma 7.2: Let L = Ltm with m ≥ 2, and let F be any field. Then the F-Lie

algebra L = FL is indecomposable.

Proof. Put Z = Z(L) = spanF{z1, z2}. A routine check shows that

(7.4)
W = {w ∈ L | dimF(spanF{[w, v] | v ∈ L}) ≤ 1}

= {w ∈ L | spanF{[w, v] | v ∈ L} ⊆ Fz1} = spanF{xm, y1}+ Z

so that W is a vector subspace and dimF(W) = 4. For a contradiction, suppose

that L = A⊕ B for non-zero Lie ideals A,B � L. Since A is nilpotent, A has

non-zero centre Z(A) �= {0}, and likewise Z(B) �= {0}. Thus Z = Z(A) ⊕ Z(B)

implies dimF(Z(A)) = dimF(Z(B)) = 1. We deduce that A ∪ B ⊆ W and

hence W = L, in contradiction to dimF(L) = 2m+ 2 > 4.

We remark that, in contrast to the situation treated in Lemma 7.2, the Lie

lattice Lt is already decomposable over Z: clearly, Lt = (Zx1+Zy1+Zz1)⊕Zz2

decomposes as a direct sum of two non-zero Lie ideals.
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Lemma 7.3: Let L = Ltm with m ≥ 2, and let F be any field. Then the F-Lie

algebra L = FL is generated by

Y = {w ∈ L� Z(L) | CL(CL(w)) = Fw + Z(L)}
if and only if m �= 2.

Proof. For short we put Z = Z(L) = [L,L] = spanF{z1, z2}.
First consider the special case m = 2. We claim that Y is contained in

the proper Lie subalgebra W = spanF{x2, y1} + Z; thus Y fails to generate L.

Indeed, from the description (7.4) and the definition of Y we see that both W

and Y are Aut(L)-invariant. Thus it suffices to check that x1 /∈ Y and that

for every w ∈ L � W there exists g ∈ Aut(L) such that wg = x1. From

CL(x1) = spanF{x1, x2}+ Z we deduce that CL(CL(x1)) = spanF{x1, x2}+Z,

and this gives x1 /∈ Y. Now let w ∈ L�W. Corollary 2.7 describes the reductive

part of Aut(L); compare with (4.1). From this description we see that there

exists g1 ∈ Aut(L) such that wg1 ∈ x1 + W. Finally, the description of the

unipotent radical of Aut(L) in Example 2.9 shows that there exists g2 ∈ Aut(L)

such that wg1g2 = x1.

Now suppose that m ≥ 3. We claim that Y contains the generating set

x1, x2, . . . , xm−2, xm, y1, y3, y4, . . . , ym,
m∑
i=1

xi,
m∑
i=1

yi

for L. Indeed, for i ∈ {1, . . . ,m} it is easily checked that

CL(xi) = spanF{x1, . . . , xm, y1, . . . , yi−1, yi+2, . . . , ym}+ Z,

CL(yi) = spanF{x1, . . . , xi−2, xi+1, . . . , xm, y1, . . . , ym}+ Z.

For i �= m − 1 this implies CL(CL(xi)) = Fxi + Z, hence xi ∈ Y. Likewise

yi ∈ Y for i �= 2, but it can be seen that xm−1, y2 do not belong to Y. In order

to bypass these exceptions, it suffices to show that
∑m

i=1 xi and
∑m

i=1 yi lie in Y.

We deduce from

CL

( m∑
i=1

xi

)
= spanF{x1, . . . , xm, y2 − y3, y3 − y4, . . . , ym−1 − ym}+ Z

that

CL

(
CL

( m∑
i=1

xi

))
= F

( m∑
i=1

xi

)
+ Z.

This gives
∑m

i=1 xi ∈ Y and similarly
∑m

i=1 yi ∈ Y.
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We remark that, for m = 1, the set Y ⊆ L = FLt defined in Lemma 7.3

coincides with L� Z(L) and thus generates L for trivial reasons.

Proposition 7.4: Let L = Ltm with m ≥ 2, and let p be a prime. Then (7.2)

holds for every finite extension F of Qp.

Proof. For m > 2 we can use the criterion established in [8, Thm. 3.9]: the

stronger ‘rigidity condition’ (7.1) follows, for every finite extension F of Qp,

with valuation ring O and valuation ideal ℘, from Lemmata 7.1, 7.2 and 7.3.

For m = 2 we give a direct proof of (7.2), as follows.

Fix a finite extension F of Qp of degree d = [F : Qp] and pick a primitive

element α for the extension so that

F = Qp(α) = Qp 1 +Qp α+ · · ·+Qp α
d−1.

The Qp-Lie algebra L̃ = Qp,FL results from the 6-dimensional Qp-Lie algebra

L = Qp ⊗Z L with basis x1, x2, y1, y2, z1, z2, subject to the relations indicated

in (7.3), via extension and restriction of scalars; we have dimQp(L̃) = 6d and L̃

admits a Qp-basis consisting of the elementary tensors

xiα
j=αj⊗xi, yiα

j=αj⊗yi, ziα
j=αj⊗zi, for i∈{1, 2}, j∈{0, . . . , d− 1},

where we write the powers of α on the right so that they are visibly separated

from scalars coming from Qp. Likewise we find it convenient in the calculations

below to treat L̃ formally as a (Qp,F)-bimodule. We put Z̃ = Z(L̃) and recall

that

[L̃, L̃] = Z̃ = spanF{z1, z2} = spanQp
{ziαj | i ∈ {1, 2}, j ∈ {0, . . . , d− 1}}.

Furthermore, we observe that with

(7.5)

W̃ = spanF{x2, y1}+ Z(L̃) = {w ∈ L̃ | dimF[w, L̃] ≤ 1}
= spanQp

{x2αj | 0 ≤ j < d} ∪ {y1αj | 0 ≤ j < d} + Z(L̃)

= {w ∈ L̃ | dimQp [w, L̃] ≤ d}

we obtain a chain of AutQp(L̃)-invariant F- and hence Qp-subspaces

(7.6) {0} ⊆ [W̃, L̃]︸ ︷︷ ︸
=z1F

⊆ Z̃ ⊆ W̃ ⊆ L̃

with dimQp [W̃, L̃] = d and dimQp W̃ = 4d; compare with (7.4).
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Now consider an arbitrary automorphism ϕ ∈ AutQp(L̃). By means of a finite

number of basic reductions, we show that ϕ is contained in the subgroup that

appears on the left-hand side of (7.2).

Step 1. By Proposition 2.4, the group AutF(L̃) induces on Z̃ = z2F+ z1F the

group of all invertible upper triangular matrices; in particular, it acts transi-

tively on (z1F� {0})× ((z2F+ z1F)� z1F). In view of the ϕ-invariance of z1F

and z2F + z1F in (7.6) we may thus suppose without loss of generality that ϕ

fixes z1 and z2:

z1ϕ = z1 and z2ϕ = z2.

Step 2. Next we focus on [W̃ , L̃] = z1F = spanQp
{z1αj | 0 ≤ j < d}, with the

aim to reduce to the situation where ϕ induces the identity on this subspace.

In view of (7.6) we may write

(z1α
j)ϕ = z1λj for suitable λj ∈ F, 0 ≤ j ≤ d.

Due to the reduction in Step 1 we have λ0 = 1, and λd is actually deter-

mined by λ0, . . . , λd−1, because α
d can be expressed as a Qp-linear combination

of α0, . . . , αd−1; in (7.7) below it becomes clear why our analysis includes λd.

Furthermore, for 0 ≤ j < d, the images of x1α
j and y1α

j ∈ W̃ under ϕ can be

written, modulo Z̃, as F-linear combinations

(x1α
j)ϕ ≡

˜Z
x1aj + y2bj + x2a

′
j + y1b

′
j and (y1α

j)ϕ ≡
˜Z
x2cj + y1dj .

For 0 ≤ j < d we deduce that

0 = [x1, x1α
j ]ϕ = [x1a0 + y2b0 + · · · , x1aj + y2bj + · · · ] ≡z1F z2(a0bj − b0aj)

so that a0bj = ajb0. In a similar way, for 0 ≤ j ≤ d and 0 ≤ i ≤ min{1, j} we

see that

z1λj = (z1α
j)ϕ = [x1α

j−i, y1α
i]ϕ

= [x1aj−i + y2bj−i + . . . , x2ci + y1di] = z1(aj−idi − bj−ici)

so that λj = aj−idi − bj−ici. Using b0aj−1 = a0bj−1 to modify the underlined

terms and λ0 = 1 for the final simplification, we deduce that for 1 ≤ j ≤ d,

λ1λj−1 = (a0d1 − b0c1)(aj−1d0 − bj−1c0)

= a0d1aj−1d0 − b0c1aj−1d0
���������

− a0d1bj−1c0
���������

+ b0c1bj−1c0

= a0d0(aj−1d1 − bj−1c1)− b0c0(aj−1d1 − bj−1c1)

= (a0d0 − b0c0)λj = λ0λj = λj .
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By induction, we obtain λj = λ j
1 for 0 ≤ j ≤ d. Let f =

∑d
j=0 fjt

j ∈ Qp[t]

denote the minimal polynomial of α over Qp. Then

(7.7) 0=(z1f(α))ϕ=

d∑
j=0

fj(z1α
j)ϕ=

d∑
j=0

fj(z1λj) = z1

( d∑
j=0

fjλj

)
=z1f(λ1)

implies f(λ1) = 0. Hence α and λ1 are Galois conjugates in F=Qp(α)=Qp(λ1).

Modifying ϕ by a field automorphism, i.e., an element of Aut(F |Qp), we may

suppose without loss of generality that

(z1α
j)ϕ = z1α

j for 0 ≤ j < d.

Step 3. Next we focus on the action of ϕ on Z̃=z1F+z2F modulo [W̃ , L̃]=z1F;

this factor space admits z2α
j , 0 ≤ j < d, as a Qp-basis. In view of (7.6) we

may write

(z2α
j)ϕ ≡z1F z2μj for suitable μj ∈ F, 0 ≤ j ≤ d;

our aim is to show that μj = βj , with β = μ1 Galois conjugate to α.

Due to the reduction in Step 1 we have μ0 = 1, and μd is actually determined

by μ0, . . . , μd−1; compare with Step 2. For 0 ≤ j < d, the images of x1α
j

and y2α
j under ϕ can be written, modulo Z̃, as F-linear combinations

(x1α
j)ϕ ≡

˜Z
x1aj+y2bj+x2a

′
j+y1b

′
j and (y2α

j)ϕ ≡
˜Z
x1cj+y2dj+x2c

′
j+y1d

′
j .

In Step 2 we saw that a0bj = ajb0 for 0 ≤ j < d. Furthermore, for 0 ≤ j ≤ d

and 0 ≤ i ≤ min{1, j} we get, modulo z1F,

z2μj ≡z1F (z2α
j)ϕ = [x1α

j−i, y2α
i]ϕ

= [x1aj−i + y2bj−i + · · · , x1ci + y2di + · · · ] ≡z1F z2(aj−idi − bj−ici)

so that μj = aj−idi − bj−ici. A similar argument as in Step 2 shows that

μj = μ j
1 for 0 ≤ j ≤ d and that α and β = μ1 are Galois conjugates

in F = Qp(α) = Qp(β).

Step 4. We analyse further the action of ϕ on Z̃ = z1F + z2F. So far we have

reduced to the situation in which ϕ acts as the identity on z1F and

(z2α
j)ϕ = z2β

j + z1νj for 1 ≤ j ≤ d,

where β denotes a Galois conjugate of α and 0 = ν0, ν1, . . . , νd ∈ F are suitable

coefficients. As before, νd is actually determined by the previous parameters.

Proposition 2.6 describes the pointwise stabiliser of Z(L̃) inside AutF(L̃); a short
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reflection reveals that this stabiliser acts transitively on L̃�W̃ and consequently

we may suppose without loss of generality that

x1ϕ = x1;

in particular, the abelian Lie subalgebra

X̃ = C
˜L
(x1) = C

˜L
(x1F + x2F) = spanF{x1, x2, z1, z2}

is ϕ-invariant. For 0 ≤ j ≤ d we deduce from

[x1, (y2α
j)ϕ] = [x1, y2α

j ]ϕ = (z2α
j)ϕ = z2β

j + z1νj

that, modulo X̃,

(y2α
j)ϕ ≡

˜X
y1νj + y2β

j ;

in particular, y2ϕ ≡ y2 modulo X̃. Furthermore, (x1α
j)ϕ ∈ X̃ and

[(x1α
j)ϕ, y2] = [(x1α

j)ϕ, y2ϕ] = [x1α
j , y2]ϕ = (z2α

j)ϕ = z2β
j + z1νj

yield, modulo Z̃,

(x1α
j)ϕ ≡

˜Z
x1β

j + x2νj .

For 0 ≤ j < d we deduce from

z2β
j+1 + z1(β

jν1 + βνj) = [x1β
j + x2νj , y1ν1 + y2β] = [x1α

j , y2α]ϕ

= (z2α
j+1)ϕ = z2β

j+1 + z1νj+1

that νj+1 = βνj + βjν1. By recursion, this gives

νj = jβj−1ν1 for 0 ≤ j ≤ d.

Let f =
∑d

j=0 fjt
j ∈ Qp[t] denote the minimal polynomial of α and of its

conjugate β over Qp. Then

0 = (z2 f(α)︸︷︷︸
=0

)ϕ =

( d∑
j=0

fj(z2α
j)

)
ϕ =

d∑
j=0

fj((z2α
j)ϕ) =

d∑
j=0

fj (z2β
j + z1νj)

=

d∑
j=0

fj (z2β
j + z1(jβ

j−1ν1)) = z2 f(β)︸︷︷︸
=0

+z1(ν1f
′(β)) = z1(ν1 f

′(β)︸ ︷︷ ︸
�=0

)

implies ν1 = 0, hence νj = 0 for 0 ≤ j ≤ d and

(z2α
j)ϕ = z2β

j for 0 ≤ j < d.
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Step 5. Finally, let us see how ϕ acts modulo the centre. In Step 4 we saw

that y2ϕ ≡ y2 modulo X̃. Proposition 2.6 describes the pointwise stabiliser

of Z̃ inside AutF(L̃); in particular, this stabiliser acts transitively on y2 + X̃,

even if we add the condition that x1 is to remain fixed: in the notation of the

proposition, we can take

X1=

(
1 0

c1 1

)
and X2=

(
0 0

c2 0

)
, where c1, c2 ∈ F are free parameters.

Thus we may suppose, without interfering with the previous reductions, that ϕ

fixes y2, i.e.,
y2ϕ = y2.

From x2ϕ ∈ X̃ and [x2ϕ, y2] = [x2, y2]ϕ = z1ϕ = z1 we deduce that x2ϕ ≡ x2

modulo Z̃. Recall that y1 ∈ W̃ implies y1ϕ ∈ W̃; moreover, ϕ fixes x1 and z1.

Hence [x1, y1ϕ] = [x1, y1]ϕ = z1ϕ = z1 gives y1ϕ ≡ y1 modulo x2F + Z̃. From

[y1ϕ, y2]=[y1, y2]ϕ=0 we conclude that y1ϕ≡y1 modulo Z̃. We have gained

x2ϕ ≡
˜Z
x2 and y1ϕ ≡

˜Z
y1.

Now let 0 ≤ j < d. From

[x1, (y1α
j)ϕ] = [x1, y1α

j ]ϕ = (z1α
j)ϕ = z1α

j ,

[y1, (y1α
j)ϕ] = [y2, (y1α

j)ϕ] = 0

we see that (y1α
j)ϕ ≡

˜Z
y1α

j . Similarly, [x1, (y2α
j)ϕ] = (z2α

j)ϕ = z2β
j and

[y1, (y2α
j)ϕ] = [y2, (y2α

j)ϕ] = 0 imply (y2α
j)ϕ ≡

˜Z
y2β

j . Moreover

z1α = (z1α)ϕ = [x2, y2α]ϕ = [x2, (y2α)ϕ] = [x2, y2β] = z1β

implies α = β.

In summary, this shows that ϕ fixes pointwise the centre Z̃, and that, mod-

ulo Z̃,

(y1α
j)ϕ ≡

˜Z
y1α

j and (y2α
j)ϕ ≡

˜Z
y2α

j , for 0 ≤ j < d.

Finally, we observe that (x1α
j)ϕ, (x2α

j)ϕ ∈ X̃ satisfy

[(x1α
j)ϕ, y2] = [x1α

j , y2]ϕ = (z2α
j)ϕ = z2α

j

and, by similar considerations, [(x2α
j)ϕ, y1] = 0 and [(x2α

j)ϕ, y2]ϕ = z1α
j .

From this we conclude that, modulo Z̃,

(x1α
j)ϕ ≡

˜Z
x1α

j and (x2α
j)ϕ ≡

˜Z
x2α

j , for 0 ≤ j < d.

As Z̃ = Z(L̃) it follows that ϕ ∈ CAutQp (
˜L)(L̃/Z(L̃)) is contained in the subgroup

on the left-hand side of (7.2).
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7.2. The local pro-isomorphic zeta functions of groups Γ̃ associ-

ated to Lt2 and Lt3. We return to the setting described at the beginning of

the section. Let k be a number field of absolute degree d = [k : Q], with

ring of integers o. Let L̃ = Z,oL be the nilpotent Z-Lie lattice associated

to Ltm for m ∈ {2, 3} via ‘base extension’, with algebraic automorphism group

G̃ = Aut(L̃) ≤ GLnd, where n = dimZ L = 2m+2, and let p be a prime. The ba-

sic ingredients for the ‘fine’ Euler decomposition established in [8, Prop. 3.14] are

the natural isomorphisms Zpo = Zp⊗Zo ∼=∏
p|p op and Qpk = Qp⊗Qk ∼=∏

p|p kp;

we summarise the technical steps and implications in our setting. We write H̃

for the reductive part of the 1-component G̃◦. As described in Section 3.2, the

local zeta function associated to the Zp-Lie lattice L̃p = ZpL̃ can be expressed

as a p-adic integral

(7.8) ζ iso
˜Lp
(s) =

∫
˜H+
p

|deth| sp ϑ0(h)ϑ1(h) dμ ˜Hp
(h),

where H̃p=H̃(Qp), H̃
+
p =H̃p∩Mnd(Zp) and ϑ0, ϑ1: H̃p→R≥0 are suitable volume

functions, modulo a small technical issue to be taken care of: whileG = Aut(L)

is connected (as we proved), the group G̃ is typically not connected. But

in the presence of (7.1) or the somewhat weaker condition (7.2), which we

established in Section 7.1, the finite group scheme F ∼= Aut(o|Z) ∼= Aut(k|Q),

which potentially renders the group G̃ non-connected, has the feature that

F(Zp) = F(Qp) and can thus be safely ignored, by using the same argument

as in the proof of [14, Prop. 2.1]. Moreover, the group G̃p = G̃(Qp) almost,

but not quite decomposes as a direct product indexed by the primes p | p. In

the reductive part H̃p the troublesome central automorphisms disappear and

we have

H̃p
∼=
∏
p|p

Hp with Hp = H(kp) ∼= H̃p(Qp) for each p | p,

where H is the reductive part of the original group G and, setting

dp = dimZp(op) = [kp : Qp], we denote by H̃p the reductive part of the algebraic

automorphism group G̃p = Aut(L̃p) ≤ GLndp of the Zp-Lie lattice L̃p = Zp,opL,

which we analysed in Section 7.1. The next step is to transform the integral

in (7.8) over H̃+
p into a product of integrals over H+

p = Hp ∩Mn(op) for p | p;
this essentially uses the natural isomorphism between locally compact groups

(Resop |Zp
(H))(Qp) ∼= H(kp), but one also needs to pay attention to the accom-

modation of central automorphisms.
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Modulo this small wrinkle, it is not difficult to carry out the analysis in

Section 3.2 for the local field kp in place of Qp to obtain

(7.9) ζ iso
˜Lp
(s) =

∏
p|p

∫
H+

p

|deth| sp ϑ0(h)ϑ1(h)d dμHp(h),

where, for each p | p, the volume functions ϑ0, ϑ1 are defined in analogy to

Section 3.2 (we refrain from adding the decoration ‘p’) and μHp denotes the right

Haar measure on Hp with the normalisation μHp(Hp(op)) = 1; compare with

the discussion in [8, §3], in particular with [8, Prop. 3.14]. It is worth pointing

out that on the right-hand side of (7.9) the exponent of ϑ1(h) is d = [k : Q]

and not the corresponding local parameter dp; this feature results from the

treatment of central automorphisms and justifies that we consider the finite

product of integrals as one ‘package’.

It remains to carry out the explicit calculation of the integrals in (7.9) arising

from the concrete cases L = Lt2 and L = Lt3 . Consider first L = Lt2 . The

calculation of the integral in Section 4 carries over with little change. The only

material difference is that ϑ1(h) in the integrand is replaced by ϑ1(h)
d. The

intermediate integral (4.2) now takes the form∫
(A,ν)∈Ḣp with

vp(A)≥0, vp(A)+vp(ν)≥0

|detA| 4s−8d−2
p |ν| 5s−12d

p dμp(A, ν)

where Ḣp = Ḣ(kp) = GL2(kp) × GL1(kp) and the valuation map vp on kp

and on M2(kp) replaces the p-adic valuation vp used previously. Due to the

dependence on d, we then obtain

ϑ0(ξe(π)
�)ϑ1(ξe(π)

�)d = q
(8d+2)e1+12de2+(4d+4)e3
p ,

where π now denotes a uniformising element for kp, that is vp(π) = 1, and

where qp denotes the residue field size of kp, that is qp = |o/p| = |π|−1
p . We

obtain the formula

ζ iso
˜Lp
(s) =

∏
p|p

1 + q 8d+2−4s
p

(1− q 4d+4−3s
p )(1− q 8d+3−4s

p )(1 − q 12d−5s
p )

.

This is the local pro-isomorphic zeta function, at the prime p, of the class-two

nilpotent group Γ̃ = Γ̃t2 associated to L̃ = L̃t2 , as described in Section 3.1. It

is straightforward to deduce Theorem 1.6 and the assertions in Remark 1.7.
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Finally we consider L = Lt3 . The calculation of the integral in Section 5 car-

ries over with little change. Indeed, the treatment there was already performed

so that it applies equally well to the more general situation. Again, the only

material difference is that ϑ1(h) in the integrand is replaced by ϑ1(h)
d. The

intermediate integral (5.5) now takes the form∫
(A,ν)∈Ḣ with

vp(A)≥0, vp(A)+vp(ν)≥0

|detA| 5s−12d
p |ν|−s+6d

p ϑ0((A, ν)
�) dμp(A, ν)

where Ḣp = Ḣ(kp) = GL2(kp) × GL1(kp) and the valuation map vp on kp and

on M2(kp) replaces the p-adic valuation vp used previously. Due to the depen-

dence on d, we have ϑ1(ξe(π)
�)d = q 12de1+5de2+18de3

p , where π is a uniformising

element for kp and where qp denotes the residue field size of kp. Equation (5.22)

becomes

Zp(s) = ZḢ,�,ϑ,p(s) =
∑
w∈W

q
− len(w)
p

∑
e∈C with

e1>0 if w �=1

Xe1
1 X

e2
2 X

e3
3 ϑ̃(ξe(π)),

where the numerical data is now

X1 = q 12d+2−5s
p , X2 = q 6d−4−s

p , X3 = q 18d+8−9s
p .

The remaining calculations go through unchanged: the analogue of equation

(5.25) yields the formula

(7.10) ζ iso
˜Lp
(s)=

∏
p|p

(1− q24d+5−10s
p )Vp(s)

(1−q12d+3−5s
p )2(1−q18d+11−9s

p )(1−q30d−11s
p )(1−q54d+7−21s

p )
,

where

(7.11)

Vp(s) =
−q90d+14−36s

p − q78d+12−31s
p − q66d+9−26s

p − q54d+5−21s
p

1 + q12d+3−5s
p

+
q36d+9−15s
p + q24d+5−10s

p + q12d+2−5s
p + 1

1 + q12d+3−5s
p

=1 + q12d+2−5s
p − q12d+3−5s

p + q24d+6−10s
p − q54d+5−21s

p

+ q66d+8−26s
p − q66d+9−26s

p − q78d+11−31s
p .

This is the local pro-isomorphic zeta function, at the prime p, of the class-two

nilpotent group Γ̃ = Γ̃t3 associated to L̃ = L̃t3 , as described in Section 3.1. We

formulate, in analogy to Theorem 1.6, a partial generalisation of Corollary 1.4.
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Theorem 7.5: Let k be a number field of absolute degree d = [k : Q], with ring

of integers o. Let Γ̃ = Γ̃t3,k be the class-two nilpotent group of Hirsch length 8d

and with rank-2d centre, corresponding to the class-two nilpotent Z-Lie lattice

L̃ = L̃t3,k which results from the Lie lattice L = Lt3 via ‘base extension’ as

defined above.

Then the pro-isomorphic zeta function of the group Γ̃ is

ζ∧
˜Γ
(s)=

ζk(5s−(12d+3))2ζk(9s−(18d+11))ζk(11s−30d)ζk(21s−(54d+7))

ζk(10s− (24d+ 5))
ω(s),

where ζk(s) denotes the Dedekind zeta function of k and

(7.12) ω(s) =
∏
p

Vp(s)

with the product running over all non-archimedean primes p of k and Vp(s)

defined as in (7.11).

Remark 7.6: For k = Q, i.e., d = 1, the description is in agreement with Corol-

lary 1.4; compare (6.1). Similar to the special situation covered in Section 6, it

is routine to check that the infinite product in (7.12) converges absolutely and

yields a holomorphic function on the half-plane consisting of all s ∈ C with

Re(s) > max
{12d+ 4

5
,
24d+ 7

10
,
54d+ 6

21
,
66d+ 10

26
,
78d+ 12

31

}
=

⎧⎨⎩12d+4
5 if d ∈ {1, 2},

18d+2
7 if d ≥ 3.

Consequently, for number fields k of absolute degree d ≥ 3, the pro-isomorphic

zeta function of Γ̃ = Γ̃t3,k has abscissa of convergence (30d+ 1)/11 and can be

meromorphically continued at least to {s ∈ C | Re(s) > (18d+2)/7} with a sim-

ple pole at s = (30d+1)/11. For quadratic fields k, i.e., d = 2, there is an extra

twist, but a routine analysis shows that the pro-isomorphic zeta function has

abscissa of convergence 28/5 and can be meromorphically continued at least to

{s ∈ C | Re(s) > 11/2} with a simple pole at s = 28/5. Similar to Remark 1.5,

the asymptotic growth of pro-isomorphic subgroups in Γ̃ can be described by

means of a suitable Tauberian theorem. Via the Euler product, the formula for

ζ∧
˜Γ
(s) incorporates the description (7.10) of the local pro-isomorphic zeta func-

tions ζ∧
˜Γ,p

(s) = ζ iso
˜Lp
(s) for all primes p and thus also yields a generalisation of
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Theorem 1.3. Indeed, for d = 2 the zeta function ζ∧
˜Γ,p

(s) has abscissa of conver-

gence 115/21 and for d ≥ 3 it has abscissa of convergence 30d/11. Whenever p

is unramified in k, the local zeta function satisfies the functional equation

ζ∧
˜Γ,p

(s)|p→p−1 = ±p24d2+8d−10ds ζ∧
˜Γ,p

(s).

7.3. The local pro-isomorphic zeta functions of groups Γ̃ associated

to Lt. The Lie lattice L = Lt is decomposable and does not quite fit into the

same drawer as the lattices Ltm , m ≥ 2. For completeness we indicate how the

approach in [8] can be adapted in this and similar situtations to obtain the local

pro-isomorphic zeta functions of class-two nilpotent groups Γ̃ associated to Lie

lattices L̃ obtained from L via ‘base extension’.

We start our discussion more generally. Let L be any class-two nilpotent Z-Lie

lattice, and throughout let p denote a rational prime. Then [L,L] ⊆ Z(L) and

we can decompose L as a direct sum L = L◦ ⊕M of Lie sublattices, where L◦

satisfies [L◦, L◦] = Z(L◦) = [L,L] andM ⊆ Z(L) is abelian. Typically there are

many choices for L◦ and M , but both are uniquely determined up to isomor-

phism. We set l = dimZ(L
◦/[L◦, L◦]), m = dimZ(M) and n = dimZ([L

◦, L◦]).
The algebraic automorphism group Aut(L◦) can be realised as a subgroup

scheme G ≤ GLl+n via a Z-basis S◦ = (x1, . . . , xl, z1, . . . , zn) for L
◦ consisting

of a basis x1, . . . , xl for a complement of [L◦, L◦] in L◦ and a basis z1, . . . , zn

for [L◦, L◦]. Similarly we view Aut(L) as a subgroup scheme of GLl+m+n via

the extended Z-basis

S = (x1, . . . , xl, y1, . . . , ym, z1, . . . , zn),

where y1, . . . , ym form a basis for M .

There are polynomial conditions, which we will denote by (†), and a polyno-

mial map f from GLl to GLn, which can be made explicit in terms of the struc-

ture constants of the Lie lattice L◦, such that automorphisms of the Qp-Lie alge-

bra QpL
◦ = Qp⊗ZL

◦, viewed as elements of the group Gp=G(Qp)≤GLl+n(Qp),

take the form

(7.13)

(
A ∗

f(A)

)
, where A ∈ GLl(Qp) satisfies (†)

and ∗ is a placeholder for arbitrary entries.
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Moreover, automorphisms of QpL=Qp⊗ZL, viewed as elements of GLl+m+n(Qp),

take the form

(7.14)

⎛⎜⎝ A ∗ ∗
B ∗

f(A)

⎞⎟⎠ , where A ∈ GLl(Qp) satisfies (†),
B ∈ GLm(Qp) has no particular restrictions

and ∗ is a placeholder for arbitrary entries.

We set pL
◦ = Zp ⊗Z L

◦ and pL = Zp ⊗Z L. As described in Section 3.2, the

local zeta function ζ∧L◦,p(s) = ζ isoL◦
p
(s) is under suitable assumptions given by an

integral

(7.15) ζ isoL◦
p
(s) =

∫
H+

p

|det h| sp ϑ0(h)ϑ1(h) dμHp(h)

over H+
p = Hp ∩ Ml+n(Zp), where Hp denotes the reductive part of Gp

and ϑ0, ϑ1 : Hp → R≥0 are suitable volume functions. The descriptions in (7.13)

and (7.14) provide a close link between the groups of Qp-points of the algebraic

automorphism groups of L◦ and L; for instance, the reductive parts are Hp

and Hp × GLm(Qp), up to isomorphism. Utilizing this connection, we obtain

for the local zeta function ζ∧L,p(s) = ζ isoLp
(s) the integral formula

(7.16)

ζ isoLp
(s) =

∫
H+

p

|det h| sp ϑ0(h)ϑ1(h)(l+m)/l dμHp(h)

×
∫
GLm(Qp)+

|det g| s−l
p dμGLm(Qp)(g),

in analogy to (7.9); the first factor is a mild modification of the integral in (7.15)

and accomodates for the extra middle block in the third column of (7.14), the

second factor accommodates for the extra blocks in the middle column in (7.14).

The second factor in (7.16) is well-known and easy to compute; one gets∫
GLm(Qp)+

|det g| s−l
p dμGLm(Qp)(g) =

m∏
j=1

(1− p(l+j−1)−s)−1.

Example 7.7: Let L = L◦ ⊕M , where

L◦ = Zx1 ⊕ Zx2 ⊕ Zz1

with [x1, x2] = z1 denotes the Heisenberg Lie lattice and

M =
m⊕
i=1

Zyi ∼= Zm
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is abelian. Then (l, n) = (2, 1) and

Hp = {diag(A, detA) | A ∈ GL2(Qp)} ≤ GL3(Qp),

furthermore ϑ0(h) = 1 and ϑ1(h) = |detA|−2
p for h = diag(A, detA) ∈ Hp in

the above approach; consequently, we obtain

ζ isoLp
(s) =

∫
GL2(Qp)+

|detA| 2s−m−2
p dμGL2(Qp)(h) ·

m∏
j=1

(1 − p(j+1)−s)−1

= (1− p(m+2)−2s)−1(1 − p(m+3)−2s)−1
m∏
j=1

(1− p(j+1)−s)−1,

in agreement with the calculation in [3, §3.3.4]. The pro-isomorphic zeta func-

tion of the corresponding group Γ ∼= Heis(Z) × C m
∞ is a product of shifted

Riemann zeta functions.

In a situation where L◦ satisfies rigidity conditions of the kind described

in Section 7.1 the approach discussed in Section 7.2 can easily be adapted to

yield a formula for the local zeta functions ζ∧
˜L,p

(s) = ζ iso
˜Lp
(s) of Lie lattices L̃

obtained from L via ‘base extension’. As before let k be a number field of

absolute degree d = [k : Q], with ring of integers o. We apply the method

and notation from Section 7.2 to L◦ in place of L. Let L̃ = Z,oL be the class-

two nilpotent Z-Lie lattice obtained by extending and restricting scalars. We

observe that L̃ = L̃◦ ⊕ M̃ is a suitable decomposition of L̃ in the sense given

at the beginning of this section, with L̃◦ = L̃◦ satisfying [L̃◦, L̃◦] = [L̃, L̃]

and M̃ ⊆ Z(L̃) abelian; furthermore, dimZ(L̃
◦) = (l+ n)d and dimZ(M̃) = md.

Combining the approaches taken in this and the previous section, we arrive at

the integral formula

ζ iso
˜Lp
(s) =

(∏
p|p

∫
H+

p

|deth| sp ϑ0(h)ϑ1(h)(l+m)d/l dμHp(h)

)

×
∫
GLmd(Qp)+

|det g| s−ld
p dμGLmd(Qp)(g)

=

(∏
p|p

∫
H+

p

|deth| sp ϑ0(h)ϑ1(h)(l+m)d/l dμHp(h)

) md∏
j=1

(1−p(ld+j−1)−s)−1,

where Hp, H
+
p , ϑ0 and ϑ1 (again without the decoration ‘p’) are defined as in

preparation for (7.9), but applied to L◦ instead of L.
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Finally we apply the above considerations to L = Lt = L◦ ⊕M , where

L◦ = Zx1 ⊕ Zx2 ⊕ Zz1

with [x1, x2] = z1 is the Heisenberg Lie lattice and

M = Zy1

is abelian of rank 1. In this case (l,m, n) = (2, 1, 1) and our general formula

specialises to

ζ iso
˜Lp
(s) =

(∏
p|p

∫
GL2(kp)+

|detA| 2s−3d
p dμGL2(kp)(h)

)
·

d∏
j=1

(1− p(2d+j−1)−s)−1

=

(∏
p|p

(1− q 3d−2s
p )−1(1− q

(3d+1)−2s
p )−1

)
·

d∏
j=1

(1− p(2d+j−1)−s)−1,

where qp denotes the residue field size of kp. The pro-isomorphic zeta function

of the corresponding class-two nilpotent group Γ̃ is a product of two shifts of

the Dedekind zeta function of k and d shifted Riemann zeta functions.

Theorem 7.8: Let k be a number field of absolute degree d = [k : Q], with ring

of integers o. Let Γ̃ = Γ̃t,k be the class-two nilpotent group of Hirsch length 4d

and with rank-2d centre, corresponding to the class-two nilpotent Z-Lie lattice

L̃ = L̃t,k which results from the Lie lattice L = Lt via ‘base extension’ as

defined above.

Then the pro-isomorphic zeta function of the group Γ̃ is

ζ∧
˜Γ
(s) = ζk(2s− 3d) ζk(2s− (3d+ 1)) ·

d∏
j=1

ζQ(s− (2d+ j − 1)),

where ζk(s) denotes the Dedekind zeta function of k and ζQ(s) denotes the

Riemann zeta function; in particular, it admits meromorphic continuation to

the entire complex plane.

Remark 7.9: The abscissa of convergence of ζ∧
˜Γ
(s) is 3d, with a single pole

at s = 3d. The asymptotic growth of pro-isomorphic subgroups in Γ̃ can be

described by means of a suitable Tauberian theorem. The local zeta func-

tion ζ∧
˜Γ,p

(s) has abscissa of convergence 3d − 1 and, if p is unramified in k, it

satisfies the functional equation

ζ∧
˜Γ,p

(s)|p→p−1 = ±p8d2+ 1
2 d(d+1)−5ds ζ∧

˜Γ,p
(s).
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