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ABSTRACT

The pro-isomorphic zeta function of a finitely generated nilpotent group
is a Dirichlet generating series that enumerates all finite-index subgroups
whose profinite completion is isomorphic to that of the ambient group. We
study the pro-isomorphic zeta functions of Q-indecomposable D*-groups of
even Hirsch length. These groups are building blocks of finitely generated
class-two nilpotent groups with rank-two centre, up to commensurability.
Due to a classification by Grunewald and Segal, they are parameterised
by primary polynomials whose companion matrices define commutator re-
lations for an explicit presentation. For Grunewald—Segal representatives
of even Hirsch length of type f(t) = t™, we give a complete description
of the algebraic automorphism groups of associated Lie lattices. Utilis-
ing the automorphism groups, we determine the local pro-isomorphic zeta
functions of groups associated to t? and ¢3. In both cases, the local zeta
functions are uniform in the prime p and satisfy functional equations.
The functional equations for these groups, not predicted by the currently
available theory, prompt us to formulate a conjecture which prescribes,
in particular, information about the symmetry factor appearing in local
functional equations for pro-isomorphic zeta functions of nilpotent groups.
Our description of the local zeta functions also yields information about
the analytic properties of the corresponding global pro-isomorphic zeta
functions. Some of our results for the D*-groups associated to t2 and ¢3
generalise to two infinite families of class-two nilpotent groups that result
naturally from the initial groups via ‘base extensions’.

1. Introduction

1.1. SETTING THE SCENE. Zeta functions of groups and rings were introduced
by Grunewald, Segal and Smith [19] as an effective means for studying subgroup
growth. Since their inception in the late 1980s, much progress has been made
regarding their analytic and arithmetic properties; see for instance [13, 37].
In this paper we focus on pro-isomorphic zeta functions. Let I' be a finitely
generated nilpotent group and let a/>(I") denote the number of subgroups A <T'
satisfying |T" : A| = n and A f, where H denotes the profinite completion of a
group H. The pro-isomorphic zeta function of I' is the Dirichlet generating
series

@(s) =Y apl)n™ (s€C)

n=1
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As with subgroup and normal subgroup zeta functions, an immediate con-
sequence of nilpotency is that the pro-isomorphic zeta function has an FEuler
product decomposition over all rational primes:

(1.1) GP(s) =] ¢l ,(s), where (P (s) =D ah (D) p*e
D k=0

is called the local zeta function at a prime p and is known to be a rational
function in p~—* over Q; see [19].

A special feature of pro-isomorphic zeta functions, in contrast to other related
zeta functions of groups, is that the local zeta functions can be expressed rather
naturally as p-adic integrals over algebraic groups taking the form

(12) 2@.0)(s) = | _ldet(a)}; o).

Here G < GLg4 is an affine Z-group scheme (the algebraic automorphism group
Aut(L) of an associated nilpotent Lie lattice L), u, denotes a suitably nor-
malised Haar measure on the locally compact p-adic group G, = G(Qp),
and G;r = Gp N My(Z,) is a compact open subset of G,; the precise details
are described in Section 3.

Integrals such as (1.2) have a long history and were studied for various clas-
sical groups by Hey, Weil, Tamagawa, Igusa and others [20, 39, 33, 23]; for a
more detailed account see [14]. Grunewald, Segal and Smith [19] discovered
the relevance of such integrals for the study of pro-isomorphic zeta functions.
Subsequently, du Sautoy and Lubotzky [14] advanced the general theory of in-
tegrals of the form (1.2) by considering non-reductive groups G; an essential
aspect of their work was to carry out a reduction of the integral, subject to
certain technical assumptions, to an integral over a reductive subgroup.

It is remarkable that in many cases (e.g., when the algebraic group G is
irreducibly reductive and split over Q) the zeta functions Z,(s) = Z(G,p)(s)

S

are given by a single rational function in p, p~° and display a symmetry upon

inversion of the prime, for almost all primes p:

Zp(8)psp-—1 = (=1)7p* " Z,(s) for suitable a,b,j € No.

Constructions using base extensions lead to slightly more general situations,
where the zeta functions are finitely uniform and a corresponding finite vari-
ation a = a(p),b = b(p) with p is observed; compare with [19, Thm. 4], [14,
§3] and [8]. In these contexts the functional equation is a manifestation of the
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compatibility of the integral with the p-adic Bruhat decomposition and sym-
metries related to the affine Weyl group of the reductive group G; see [23, 14].
Such a phenomenon should be compared with the symmetries conjectured by
Igusa and proved by Denef and Meuser [10] for integrals over Z;l of integral
homogeneous polynomials, based on the principalisation of ideals and the Weil
conjectures. More general results in this direction, with group-theoretic applica-
tions, were discovered and proved by Voll [36]. Since then functional equations
of the kind discussed have been recognised as a widespread, but not universal
feature of zeta functions associated to groups, rings and modules; for instance,
see [1, 32, 29, 38, 25, 15, 5].

1.2. MAIN RESULTS AND A CONJECTURE. The motivations for the present pa-
per are two-fold. Firstly, we wish to explore pro-isomorphic zeta functions
of nilpotent groups in situations where a crucial standard assumption, origi-
nally introduced in [14] and until now widely used to study integrals of the
form (1.2), does not hold. For this purpose, we consider finitely generated
torsion-free class-two nilpotent groups with rank-two centres; we refer to such
groups as D*-groups. An explicit example from this family is studied in depth
in this paper, pertaining to the D*-group I';s of Hirsch length 8, associated to
the primary polynomial t3; see Theorem 1.3 below and the following discussion.
Our analysis relies in the first place on pinning down the automorphism group
of I';s. More generally, we extend the computation, initiated in [6], of the au-
tomorphism groups of Grunewald—Segal representatives of QQ-indecomposable
D*-groups, up to commensurability; see Theorem 1.10. In addition to its in-
herent interest, our description of the automorphism groups provides a first
essential step toward studying the pro-isomorphic zeta functions of more com-
plicated D*-groups; we extend our description of the relevant automorphism
groups further in [7]. Indeed, after our original work was finished, Moadim Les-
imcha and Schein [28] went ahead and studied other families of D*-groups; they
produced a combinatorial description of local pro-isomorphic zeta functions and
derived local functional equations for the families that they considered. Sec-
ondly, we wish to establish a conjectural framework for the shape that local
functional equations take in the context of pro-isomorphic zeta functions of
nilpotent groups, when they occur; see Conjecture 1.8.

We now provide more details. In [18, §6], Grunewald and Segal considered
D*-groups, that is, torsion-free radicable class-two nilpotent groups of finite
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rank with rank-two centres. They classified the indecomposable constituents
of such groups, by giving a parametrisation in terms of the rank and—in even
rank—an extra datum, namely the projective equivalence class of an associated
binary form over Q. Each D*-group is the radicable hull of a D*-group, de-
termined up to commensurability. We refer to such ‘integral representatives’ of
indecomposable D*-groups as Q-indecomposable D*-groups.

In [18, Thm. 6.3], Grunewald and Segal effectively gave explicit presenta-
tions for certain Q-indecomposable D*-groups, which cover all such groups
up to commensurability. For convenience, we refer to these special groups as
Grunewald—Segal representatives. In passing, we remark that the local normal
subgroup zeta functions of such Grunewald-Segal representatives were com-
puted in [35, §3.2]. The automorphism groups of Grunewald-Segal represen-
tatives for Q-indecomposable D*-groups of odd Hirsch length were determined
in [6]. In the current paper we consider Grunewald-Segal representatives for
@Q-indecomposable D*-groups of even Hirsch length; these are defined explic-
itly in Section 2. We are particularly interested in a subfamily of D*-groups
I'tm, m € N, given by the presentations

Dim ={(x1, . s Ty Y1, - - 5 Y, 21, 22 |
[zi,y;] = 21 for 1 <i <m,
[j,yj+1] = 22 for 1 < j <m,
(13) [2i,yj] = 1 for 1 <i,j <m with j —i ¢ {0, 1},
[

i, T3] = [Yi, Ys) = [0y 2] = (24, 22] = [yi, 21] = [y, 22] =1

for 1<i,5<m).

Observe that I'ym has Hirsch length 2m+2 and rank-two centre Z(I'ym ) = (21, 22).
For m=1, the presentation yields the decomposable D*-group

Iy = Cy x Heis(Z),

the direct product of an infinite cyclic group and the discrete Heisenberg group.
Its pro-isomorphic zeta function is relatively easy to compute:

Cr, (s) = ¢(s — 2)¢(2s — 3)¢(25 — 4)

is a product of shifted Riemann zeta functions; this case was already treated
in [3, §3.3.4] and we confirm the result in Example 3.8.
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For m > 2, the groups I'sm constitute one basic family of Grunewald—Segal
representatives for Q-indecomposable D*-groups. In Theorem 1.10 below we
provide, for all m € N, a complete description of the algebraic automorphism
groups of associated Lie lattices. Based on this result, we explicitly determine
for m € {2,3} the corresponding pro-isomorphic zeta functions, including all
local zeta functions with no exceptions.

THEOREM 1.1: For all primes p, the D*-group I' = I';2> satisfies

(rp(s) = We(p,p™°),
where
14 Xx10y+4
(1 — X8Y3)(1 — X11Yy4)(1 — X12Y5)°

Thus ({" ,(s) has abscissa of convergence 11/4 and satisfies the functional equa-

We(X,Y) =

tion
Pp(8)lposp-1 = (“D)P* ¥ R, (s).
COROLLARY 1.2: The pro-isomorphic zeta function of the D*-group I' = I';2 is
A (s) €(3s —8)((4s — 11)¢(5s — 12)¢(4s — 10)
S =
r ¢(8s — 20) ’

where ((s) denotes the Riemann zeta function; in particular, it admits meromor-
phic continuation to the entire complex plane and has abscissa of convergence 3,

with a double pole at s = 3.
Furthermore, the asymptotic growth of pro-isomorphic subgroups in T' is

given by
N

(1.4) > ap(l) ~c2N*log N as N — oo,
n=1

where

5¢(3)
C2 = ]_271'2 ~ 0.050747.

Theorem 1.1 and its proof resemble similar results for other nilpotent groups,
for instance the D*-groups studied in [6]. In contrast, the next theorem and its
proof open up several promising new directions for further exploration.

THEOREM 1.3: For all primes p, the D*-group I' = I';s satisfies

(L p(s) = Wes(p,p™®),
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where
W (X,Y)=(1 - X®Y10)

(1—|—X14Y5—X15Y5+X30Y10—X59Y21+X74Y26—X75Y26—X89Y31)
(1 _ X15Y5)2(1 _ X29Y9)(1 _ XSOYll)(l _ XGly21)

Thus ¢ ,(s) has abscissa of convergence 29/9 and satisfies the functional equa-

tion
(R p(8)|pop—1 = ()PP 71 1, (9).

COROLLARY 1.4: The pro-isomorphic zeta function of the D*-group I' = I';s
has abscissa of convergence 10/3 and admits meromorphic continuation to
{s € C| Re(s) > 3} via

C(5s—15)C(95—29)¢(10s — 30)¢(11s — 30)C(15s — 45)¢(21s — 61) ~

()= ¢(10s — 29)C(30s — 90) Vi),

where ((s) denotes the Riemann zeta function and

~ W(p,p~*)
Y(s) = H 1 — pl5-5s 4 p30—10s
p

for
W(X Y) _ 1+X14Y57X15Y5+X30Y107X59Y21+X74Y267X75Y26*X89Y31'

moreover, the line {s € C | Re(s) = 3} is a natural boundary. In particular, the
zeta function ({(s) has a simple pole at s = 10/3.

Remark 1.5: Similar to Corollary 1.2, the asymptotic growth of pro-isomorphic
subgroups in I' = I';s can be described by means of a suitable Tauberian theo-

rem:

N
Zaﬁ(F) ~ N3 as N — oo,
n=1

where
_ ¢(5/3)¢(10/3) ¢(20/3) ¢(5) ¢(9) $(10/3)

30¢(13/3) ¢(10) € R>o

Cy3

is somewhat unwieldy.
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Following a suggestion of the referee, in Section 7 we extend our results for the
Q-indecomposable D*-groups I';2 and I';s to two infinite families, ft; , and ft37 k
of class-two nilpotent groups, where k runs through all number fields. These
families of groups result naturally from the initial groups via ‘base extensions’
of corresponding Lie lattices, and pro-isomorphic zeta functions of groups con-
structed in this way were systematically investigated in [8]. For completeness
we also discuss the family ftk associated to the decomposable D*-group I';. We
state here the generalisation of Corollary 1.2; further details about the set-up
and generalisations of some of our other results can be found in Section 7.

THEOREM 1.6: Let k be a number field of absolute degree d = [k : Q], with
ring of integers o. Let r = ft2,k be the class-two nilpotent group of Hirsch
length 6d and with rank-2d centre, corresponding to the class-two nilpotent 7Z-
Lie Iattice L = EtzJC which results from the Lie lattice L = L2 associated to
the group I'y2 by extension of scalars from Z to o and subsequent restriction of
scalars back to Z.

Then the pro-isomorphic zeta function of the group T is

(1 5) (:L\ (S) _ Ck (38 - (4d+4))<k (48— (8d+3))<k(58— 12d)<k (48 - (8d+2))

' r Ck(8s — (16d + 4)) ’
where (i (s) denotes the Dedekind zeta function of k; in particular, it admits
meromorphic continuation to the entire complex plane.

Remark 1.7: For k = Q, i.e., d = 1, we recover Corollary 1.2. For quadratic
fields k, i.e., d = 2, the abscissa of convergence is 5, with a double pole at s = 5.
For number fields k& of absolute degree d > 3, the abscissa of convergence
is (12d+1)/5, with a simple pole at s = (12d+1)/5. Similar to Corollary 1.2, the
asymptotic growth of pro-isomorphic subgroups in I can be described by means
of a suitable Tauberian theorem. Via the Euler product, the formula (1.5) in-
corporates a description of the local pro-isomorphic zeta functions §14\_ (s) for all
primes p and thus also yields a generalisation of Theorem 1.1. Indeed, for d > 2
the zeta function Q?, (s) has abscissa of convergence 12d/5 and, if p is unrami-
fied in k, it satisfies the functional equation

d?+5d—8d
lg,p(sﬂp—ﬂfl = £p!0 I8 Sclé,p(s)'
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Theorem 1.3 and its proof extend the scope of functional equations and the
complexity of the integrals arising in the context of pro-isomorphic zeta func-
tions of class-two nilpotent groups. As alluded to above, and demonstrated in
Remark 5.6 below, it is the first explicitly computed pro-isomorphic zeta func-
tion for which a certain lifting condition [14, Assumption 2.3] does not hold.
Furthermore, it involves a technically challenging computation of an integral
with non-multiplicative integrand which requires careful analysis by certain
number-theoretic and combinatorial techniques. In particular, one needs to
count solutions to congruence equations of the form p®z2 + pPyz =0 mod p™;
see Section 5. This reveals a new phenomenon in the setting of pro-isomorphic
zeta functions, namely the prominent role played by counting points on reduc-
tions of varieties; previously this feature was encountered only for other types
of zeta functions of nilpotent groups, such as subgroup and normal subgroup
zeta functions; compare with [12, 11, 36]. Our analysis of the structure of the
automorphism groups of Q-indecomposable D*-groups of even Hirsch length
given in Section 2 suggests that this is only the tip of the iceberg, and should
be contrasted with the linearity assumption in [14, §5].

The available theory on integrals of the form (1.2), which occupy a central role
in our computation, could not be used to predict a priori the resulting form of
the local pro-isomorphic zeta function in any sense. It is thus somewhat of a sur-
prise that the zeta functions in Theorem 1.3 satisfy local functional equations.
In contrast to the situation for Q-indecomposable D*-groups of odd Hirsch
length [6], the values of the abscissae of convergence—for the pro-isomorphic
zeta functions of Q-indecomposable D*-groups of even Hirsch length—remain
elusive. More work is required, even to produce a promising conjecture for the
family of groups I'ym, m € N>s.

In order to compare the local functional equations in Theorems 1.1, 1.3 and
their generalisations with data for other groups, we briefly recall further con-
cepts. To a finitely generated torsion-free class-c nilpotent group I' of Hirsch
length d one associates, via Lie theory, a class-c nilpotent Z-Lie lattice L of
Z-rank d, whose local zeta functions

(Lp(s) = CE0(s) = > ale(Ly)p™*
k=0

satisty
(Ep(s) = CLp(s)
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for almost all primes p; here L, = Z, ®z L denotes the p-adic completion
of L, and a;;,S(Lp) is the number of Lie sublattices of L, of index p* which are
isomorphic to L. It was shown in [19] that each local zeta function (7 ,(s) is a
rational function in p~* over Q, i.e., Cﬁp(s) = Wp(p~*) for suitable W, = R, /Q),
with R, Qp € Q[Y]. We then define the degree of a local pro-isomorphic zeta
function, denoted by deg,-. ¢ f,p(s), to be the degree of the rational function W,

viz.
deg W), = degy R, — degy Q).

The family of local zeta functions Qﬁp(s) is said to be finitely uniform if there
exist finitely many rational functions Wy,..., W, € Q(X,Y) in two variables
such that, for each prime p, there is an index i = i(p) for which

Crp(8) = Wp(p™®) = Wi(p,p™°).

Another ingredient relates to the nilpotent Z-Lie lattice L itself: recall that L
is N-graded if it is equipped with an additive decomposition L = @,y L)
such that [Ly, L] € Lqj for all i,5 € N; for short, we refer to the latter
as a grading on L. Since L has finite rank as a Z-module, there exists, for
a given grading, a minimal [ € Np such that L;) = 0 for j > [; the grading
then gives rise to a descending filtration L = Ly D Ly 2 --- 2 Ly 2 {0}
of L by Lie sublattices L;y = Zim Ly 2 vi(L). We call a grading natural if
its associated filtration is precisely the lower central series, i.e., if Ly = (L)
for 1 <i <[ and ! = cis the nilpotency class of L. To a grading on L as above
we attach a weight given by

l

l
Z ) I'kZ L(l) = Z I‘kZ L(i),

=1 i=1

and we call a grading minimal if its weight is minimal amongst all weights of
gradings on L. In passing, we mention that not all nilpotent Lie lattices admit
a grading. For instance, Dyer [16] constructed a 9-dimensional class-6 nilpotent
Lie algebra over @Q whose algebraic automorphism group is unipotent. This
implies that the Lie algebra does not possess any grading, since every non-zero
graded Lie algebra admits non-trivial semisimple automorphisms; clearly, no
Lie lattice in such a Lie algebra can possess a grading.
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CONJECTURE 1.8: Let L be a nilpotent Z-Lie lattice that admits at least one
grading. Then, for almost all primes p, the degree of the local pro-isomorphic
zeta function of L at p is equal to the weight of a minimal grading of L.

In particular, if the family of local pro-isomorphic zeta functions ¢ fjp(s) is
finitely uniform and the local zeta functions satisfy, for almost all primes p,
functional equations of the form

CP () psp—1 = (=1)p*"¢P (s)  for suitable a=a(p),b=b(p), j=4j(p) €Ny,
then the integer b in the ‘symmetry factor’ is the same for almost all p and is
given by the weight of a minimal grading of L.

Remark 1.9: Note that natural gradings, when they exist, are minimal. It
follows that, if a class-c nilpotent Lie lattice L is naturally graded, then—in
accordance with the conjecture—we expect that

deg,. Cf () = 3 rky 75(L)
j=1

for almost all primes p. It is curious that this expression already has an in-
terpretation in asymptotic group theory: it provides the degree of polynomial
word growth of finitely generated nilpotent groups I' giving rise to L via Lie
theory; see [2]. In particular, every class-two nilpotent Lie lattice L is naturally
graded and thus we expect that the degrees satisfy

deg,—. (1 ,(s) = rkz L +rkg[L, L]
for almost all primes p.

In spirit, Conjecture 1.8 is similar to part of a conjecture of Voll on submodule
zeta functions [38, Conj. 1.11], but the conjectures involve different types of
filtrations (which can be seen already for the group I';, arising from (1.3) for
m = 1) and as yet there is no direct link between the two. We have tested
Conjecture 1.8 comprehensively for all nilpotent Z-Lie lattices L for which the
local pro-isomorphic zeta functions are known; this list includes many naturally
graded Lie lattices as well as some Lie lattices not possessing a natural grading;
we refer to [19, 3, 6, 8, 28] for descriptions of relevant nilpotent Z-Lie lattices and
their pro-isomorphic zeta functions. The current paper provides two new infinite
families of groups confirming the conjecture: the integers b in the symmetry
factors of the local zeta functions described in Remarks 1.7 and 7.6 indeed match
the sum of the ranks of terms of the lower central series: for the ‘base extensions’
defined in Theorems 1.6 and 7.5 one has 8d = 6d + 2d and 10d = 8d + 2d for all
primes unramified in the extension.
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Our conjecture also holds true for a Z-Lie lattice L, constructed by Berman
and Klopsch in [5], with the property that its local pro-isomorphic zeta func-
tions ijp(s) do not satisfy functional equations for p > 3. The relevant Lie
lattice L is not naturally graded, but admits a minimal grading of weight 102;
and, indeed, the local zeta functions are uniform in p, for p > 3, of degree 102.
This example can also be generalised by means of base extensions; see [8].

It is well known and easy to see that there is a link between the existence of
gradings of a Z-Lie lattice L and the occurrence of diagonalisable elements in
the algebraic automorphism group Aut(L) of L. Conjecture 1.8 suggests that
there is a somewhat more delicate connection (yet to be discovered) between
minimal gradings of a nilpotent Z-Lie lattice L and the degrees of its local pro-
isomorphic zeta functions, which stand in close relation to Aut(L) as indicated
in (1.2).

In order to carry out the computations leading to Theorems 1.1 and 1.3 and
their generalisations we require a structural description of the relevant auto-
morphism groups. In fact, we determine the algebraic automorphism groups for
the Lie lattices associated to Grunewald—Segal representatives of Q-indecompo-
sable D*-groups of even Hirsch length associated to the primary polynomials
A(t)=t™, for all m € N; as in the case of odd Hirsch length [6], this structure
theorem for the algebraic automorphism groups is of independent interest. The
presentation (1.3) for the group I'ym readily translates into a description (2.2)
of the corresponding Lie lattice; compare with Section 3.1.

THEOREM 1.10: For m € N, let G < GlLan,4+2 be the algebraic automorphism
group of the Z-Lie lattice (scheme) L associated, via (2.2) below, to the primary
polynomial A(t) = t™. Let Go < G be the affine subgroup consisting of all
automorphisms that fix pointwise the centre of L. Then G splits as

G'EBQD(G(),

where, for every field extension k of Q, the group Ba(k) is the group of invertible
lower-triangular 2 X 2 matrices, and

Go(k) 2 SLy(R) x Vg (R)®2,  for R = K[t]/(t™) and Vi (R) = R?,

with respect to the standard left action. In particular, the algebraic group G
is connected.
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Remark 1.11: In fact, the description of Gq given in Theorem 1.10 holds true
more generally, for Z-Lie lattices corresponding to arbitrary primary polyno-
mials; see Theorem 2.3 below. The description of the quotient of G by Gy,
however, becomes more involved; see [7].

The proof of Theorem 1.10, along with explicit forms of the automorphism
groups, is given in Section 2. Our considerations in this context overlap some-
what with the treatment in [9]. In [7] we give a complete description of the
algebraic automorphism groups of all Z-Lie lattices associated to Grunewald—
Segal representatives of Q-indecomposable D*-groups of even Hirsch length,
based on a more technical analysis of the Lie algebras associated to (subgroups
of) the algebraic automorphism groups.

1.3. LAYOUT OF THE PAPER. In Section 2 we analyse and describe the al-
gebraic automorphism groups of Z-Lie lattices associated to indecomposable
D*-groups of even Hirsch length, corresponding to primary polynomials of the
form A(t) = t™. In Section 3 we provide technical background regarding con-
ditions on the algebraic automorphism group of a Lie ring that is needed for
calculating pro-isomorphic zeta functions of groups. In Sections 4 and 5 we
present calculations of the local pro-isomorphic zeta functions of the groups I';z
and I'ys. The former group can be dealt with in a quite straightforward man-
ner, while the latter group is considerably more difficult to handle. From the
description of the local zeta functions we draw conclusions about the analytic
behaviour of the global pro-isomorphic zeta functions of I';2 and I';s; again
the treatment of the latter group, which forms Section 6, is more challenging
and displays interesting features. In Section 7 we extend our results for the
groups [';2 and I'ys to two infinite families of class-two nilpotent groups that
result via ‘base extensions’ of corresponding Lie lattices.

1.4. BAsic NOTATION. We denote by Ny and N the non-negative and positive
integers, respectively. For S C R and a € R we write Ss>, = {z € S| z > a},
and similarly for Ss,. For a prime p, we write Q,, for the field of p-adic numbers
with Z,, its ring of integers. We denote the p-adic valuation of z € Q, by v,(z)
and write |z|, = p~%® for the p-adic absolute value. A Lie lattice over a
commutative ring R with 1 is a finitely generated free R-module, equipped with
a suitable Lie bracket.
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2. Automorphism groups of Q-indecomposable D*-Lie lattices

For any commutative ring R with 1 and any free Z-module M, we use the
notation pM = R ®z M to denote the free R-module obtained by extension of
scalars; if M carries extra algebraic structure that is compatible with extension
of scalars, such as the structure of a Lie lattice, we employ the same notation.
Thus a Z-Lie lattice L sets up a Lie lattice scheme R ~» rL. We realise the
algebraic automorphism group Aut(L) of L, via a Z-basis of L, as an affine
Z-group scheme G < GLg4, where d = dimz(L) is the Z-rank of L, so that, in
particular,

Aut(pL) =2 G(k) < GLg4(k) for every extension field k of Q,

and, thinking of GL; as a subgroup of SL441 to make the arithmetic structure
tangible,

Aut(L) =2 G(Z) and Aut(z,L) = G(Z,) for each prime p,

with respect to the chosen basis. The automorphism groups arising in this paper
come from nilpotent Z-Lie lattices with rank-two centres and, for short, we refer
to these as D*-Lie lattices. Our aim here is to describe the algebraic automor-
phism groups of Q-indecomposable D*-Lie lattices of even Z-rank d = 2m + 2
which admit a presentation suggested by [18, Thm. 6.3(b)] and associated with
the primary polynomial A(¢) = ¢™; compare with Section 3.1. The correspond-
ing task for D*-Lie lattices of odd Z-rank has been carried out in [6]; the case
of more general D*-Lie lattices of even Z-rank is considered in [7] (and turns
out to be more involved).
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We now give a detailed description, in coordinates, that is tailored also to
our investigations of pro-isomorphic zeta functions. Let m € N and consider
the companion matrix

0 1 0 0
0 0 1 0
21) K=Clai,...,am)=| : : L eMp(@
0 0 0 1
G Gm—1  Gm—2 ai
of a monic polynomial
Ag =t —at"™ ™ — o — a1t — an, € Z[t].

We consider the Z-Lie lattice L of Z-rank 2m + 2 with ordered Z-basis

8= (xla"'axma Yis- -5 Ym, 21322)
and the Lie bracket defined by
[SCi,yj] = 51-13-21 + KijZQ,
(2.2)  [mi,xj] = [Yi, y5] = [4, 21] = [24, 22] = s, 21] = (w4, 22] = O,
for 1 <i,j5 <m,

where 0; ; denotes the Kronecker-delta. We observe that L is a D*-Lie lattice
with centre

Let G < GLgy, 42 be the algebraic automorphism group of L with the embed-
ding defined by the ordered basis 8. In particular, for every integral domain k

of characteristic 0, the coordinate maps with respect to 8§ identify L with the
module k2™*2 of row-vectors, and the action of the group

G(k) = Aut(kL) S GL2m+2(I€)

on ;L corresponds to matrix multiplication from the right. We write Gog < G
for the affine subgroup and Z-subscheme arising as the kernel of the natural
restriction homomorphism
R L

(2.3) Go(k) = Ker(G(k) —Z5 GL(1.2)).

From now on without further reference, let & denote an integral domain of
characteristic 0. Recall that an n X n matrix over k is regular (or cyclic)
over k, if it is similar over k to a companion matrix; such a matrix yields a
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regular element of the Lie lattice gl (k), i.e., an element whose centraliser has
the smallest possible rank n. The fact that the matrix K is regular plays a
central role in the elucidation of G, and it is convenient to note down two
elementary facts.
Remark 2.1: Let X,Y € M, (k) be regular n x n matrices over k. Then:

(1) The centraliser of X is the polynomial algebra that it generates:

(2) If X and Y have the same characteristic polynomial, then X and Y are

similar over k.

The Lie bracket of ;L induces an anti-symmetric bilinear map
(24) [-, ] kL/kZ X kL/kZ — 4

with values in Z which, by a slight abuse of notation, we continue to denote
by [+, -]. The structure of G(k) is tightly connected with the symmetries of two
k-valued bilinear forms on the free module k2™ = xL/1kZ that can be derived
from the map described in (2.4). For any matrix Q € M,,(Z), the matrix

EQ = <_22T g) < Mgm(Z)

can be regarded as the structure matrix of an anti-symmetric bilinear form
(-,)3, on k™. Let Og,, < GLap, be the affine Z-group scheme such that Oy, (k)
consists of all elements of GLy,,, (k) that preserve the form (-, -)g,,, that is,

Oy, (k) ={g € Glam (k) | gdo 9" = do}-
We remark that, if @ = I, is the identity matrix, the group scheme Oy, is

simply the classical symplectic group Sps,, .

2.1. THE STRUCTURE OF THE ALGEBRAIC SUBGROUP Gg. We start with
the structure of Gy < G, the algebraic subgroup and Z-subscheme, whose
group of k-points G(k) fixes the centre Z = Z(;L) pointwise. An element
g € G(k) < GLam42(k) can be written as a block matrix

(x U
@25 7 Lo v)

with X =(2 B)eGLa(M,,(k)), Y=(2%)€eGCLa(k), UEMay2(k),
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where X and Y correspond to the automorphisms that g induces naturally
on yL/iZ and Z. Each of the following equivalent conditions characterises
elements of G(k) among arbitrary elements g of the form (2.5):

[u,v]g = [ug, vg] for all u,v € ,L;
[w,?]Y = [aX,0X] for all @,v € ,L/kZ;
(2.6) adr,, +cdx = X1, X" and by, +dix = XIxX .

From (2.6) we directly obtain a characterisation of G(k).

PROPOSITION 2.2: Let g € Gloy,y2(k) be a block matrix of the form (2.5).
Then:

(1) g € G(k) if and only if the following four conditions are satisfied:

(i) BAT = ABT and BKTAT = AKBT,

(ii) CDT =DCT and CKD" = DK'CT,

(iii) al,, + ¢cK = ADT — BC'T,

(iv) bl, +dK = AKDT — BKTCT.

(2) g€ Gy (k:) ifand only if Y = Iy and X € Oy, (k)NOy, (k), or explicitly:
(2%) =1y and

=R

(i) BAT = ABT and BKTAT = AKBT,
(ii) CD" =DCT and CKD" = DK'CT,
(iii)g I,, = ADT — BCT,

o K=AKDT — BKTCT.

(iv

The proof of the following key theorem was inspired by a more technical
analysis of the Lie algebras associated to subgroups of G, carried out in [7], and
by-passes the use of Lie algebras by means of a computational trick.

THEOREM 2.3: The affine group scheme Gy splits as follows:
Go(k) 2 SLa(k[K]) x Vet (K[K])®2,
where Vg (+) denotes the standard left SLy(-)-module.

Proof. Recall that every square matrix over a field is similar to its transpose
and that the conjugating matrix may be taken to be symmetric. In fact, for
regular matrices it is always symmetric; compare with [34]. Therefore, there
exists a symmetric matrix o € GL,,(Q) such that KT = ¢ Ko ~!. In our special
situation, we can even arrange that o € GL,,(Z), because the factor groups Z™
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modulo the row-span of K and Z"™ modulo the column-span of K are isomorphic
(cyclic) groups. We set

I, _
(2.7) Y= ( ) € Gloyn(Z), where K' =oKo™ !,
ag

and claim that for every g € GLay42(k) of the form (2.5), with Y = (25) =1,
the following holds:

(2.8) g € Go(k) ifand only if X7'XY € SLy(k[K]).

First suppose that g € Gg(k). By Proposition 2.2 (2), this implies that
X = (AB) € GLy(M,,(k)) satisfies conditions (i)—(iv),. From (i), (ii), (iii)o
and (iii)g—the transpose of (iii)p—we obtain

-1
A B DT  -BT
(2.9) = - T |-
¢ D —C A
Now, using the fact that the inverse g=! € Gq(k) satisfies a similar set of
equations, we get
(i) B'"D=D"Band BTK'D=D"KB,
iy CTA=ATCand CTKA=ATK'C,
(iii)y L, =DTA-BTC,
(iv)y K=D'KA-BTK'C.
Using these additional conditions we deduce that
(2.10) AK =KA, KB=BK', CK=K'C, K'D=DK'.
Indeed, multiplying (iv); by A on the left gives
AK = ADTKA - ABTKTC 2 (1,, + BOT)KA— ABTKTC
W KA+ BATKTC - ABTKTC Y KA
multiplying (iv); by BT on the right gives
iii)g
KB =DTKABT ~B'KT¢BT " DTKABT - BTKT(DAT —1,,)

O pTKkBAT - BTK™DAT + BTKT ¥ BTKT,
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multiplying (iv); by C on the left gives

(iii)g

CK=CD'KA-CB'K'C = CD"KA—- (DA" —-1,,))K'C
D peTKA-DATKTC+ KT KT
and multiplying (iv)j by DT on the right gives
KDT =DTKADT - BTKTepT "2 pTK(1,, + BCT) - BTKTCDT
©p'k+p KkBCT-B K'pCT Y DK,
Recalling the definition of ¥ in (2.7) and rewriting the relations (2.10), we

get
AK = KA, K(Bo) = (Bo)K,

(07'C)K = K(07'C), (07'Do)K = K(c ' Do).
By Remark 2.1, this implies that A, Bo,o0~1C,0~1 Do € k[K], that is,

A Bo

YIXY =
o~ 1C o Do

) € GLy(K[K)).

From Bo,o~1C € k[K] and the symmetry of o, one readily obtains that B, C are
symmetric. From (iii)o and 0~ ' Do = DT we obtain that X1 XY € SLy(k[K]).
Conversely, suppose that

A Bo
=Y 1XY e SLy(k[K)).
<0'_1C 0_1D0> € SLz(k[K])

It suffices to check the conditions (i)—(iv), in Proposition 2.2 (2). This can be
done by routine computations, using K = cKo~! and the fact that k[K] is
commutative. For instance, from o ~!Do,0~1C € k[K] and 0! = o we obtain

D=oc(c"'Do)o ' = (67 'Ds)" =oD"07 1,
thus o~ 'Do = DT, and

Co ' =o(c7'0) 0! = (0710)T =C'o7 1,
thus C' = CT. This yields

A B
I,=det| 77 J=A.07'Do—Bo-0'C=AD" —BCT,
o 'C o ‘Do

and (iii)p holds. This concludes the justification of (2.8).
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Finally, the block matrix U € Mgy, 2(k) in (2.5) remains unconstrained in
Proposition 2.2 and therefore the group is isomorphic to SLa(k[K]) x Moy, 2(k).
We can identify the natural k[K]-module ™ with the standard k[K]-module
k[K], by mapping a cyclic generator of k™ to the cyclic generator K of k[K].
Therefore Mgy, 2(k) can be replaced by a direct sum of two copies of the stan-
dard SLy(k[K])-module Vg (k[K]).

2.2. THE STRUCTURE OF THE ALGEBRAIC AUTOMORPHISM GROUP G
FOR Ak = t™. Now we focus on the special case Ag = t"™; that is, the case

010 --- 0
0o 01 -0
(2.11) K=1|: : 1 .| eMy2).
0 00 1
0 0 0 0

In this situation we can take

oo --- 1
(212) o=|" - o €GL,,(Z), and %= Im € Glom(2)
1 -+ 0 o
10 -0

in the analysis carried out in Section 2.1. We remark that this particular choice
of o corresponds to the longest element in the symmetric group Sym(m), with
respect to the standard generators as a Coexeter group.

PROPOSITION 2.4: Suppose that K has characteristic polynomial Ay = t™.
Then the natural restriction homomorphism (2.3) sets up, over Z, a split short
exact sequence

Res

Go(k) — G(k) —»  Ba(k) < GLa(k),

-
=G(k)/Go(k)

where By (k) is the group of invertible lower-triangular 2 x 2 matrices.
Proof. We show below that the image of G(k) in GL3(k) under the restriction
homomorphism

(a) contains By(k) by exhibiting an explicit section over Z, but
(b) does not contain elements of the form (} %) with b # 0.
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From this it follows that the image is precisely Ba(k), because, once we
replace k by its field of fractions, there are no properly intermediate subgroups
between Ba(k) and GLa(k), as can be seen from the Bruhat decomposition.

To prove (a), we define for a,d € k* and ¢ € k the following elements
of GLay,2(k):

Ul(a) = diag(a,a?,...,a™, 1,a”,...,a”™ " a,1),

V(d) = diag(d~,d"2,...,d"™,d,d%,...,d™,1,d),

(2.13)
. oo (10
W (c) = diag <exp<cEm>,exp<cEm>, ( 1) )

where exp(t) = Y7 ,t"/(n!) denotes the exponential series (which, evaluated
on nilpotent m X m-matrices, can be truncated after the mth term and thus

produces finite sums) and

01 0 0
00 2 0
E,=(0 0 0 . )
o (m-)
00 - 0 0
0 0 0 0 0
0 0 0
EV<O 0 T) 0 -1 0 0 0
0 —Fm— 0 0 -2 0 0
0 0
0 0 0 —(m-2) 0

A direct calculation reveals that the elements Uf(a),V(d) and W(c)
satisfy (iii) and (iv) of Proposition 2.2, while (i) and (ii) hold trivially; thus
U(a),V(d),W(c) € G(k). Moreover, there is an affine subgroup and Z-sub-
scheme B < G such that

B(k) ={U(a)V(d)W(c) | a,d € k* and ¢ € k} and B(k) = Ba(k)
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via the natural restriction homomorphism, which satisfies

a 0 10 10
U(a)r—><0 1), V(d)H(O d)’ W(c)r—><c 1);

the inverse can be built from the morphisms a — U(a), d — V(d) and ¢ — W(c)
which are defined over Z. The latter is clear for U(-) and V(-), and requires
a routine calculation for W (-): by induction, one sees that the factorials in
the denominators coming from the exponential series duly cancel out with the
entries of the relevant powers of cE,, and cE),.

To prove (b) we observe that (iii); in the proof of Theorem 2.3 holds also for
elements g € G(k) of the form (2.5) which satisfy Y = (} %). Taking the trace
in equation (iv) of Proposition 2.2 (2), we obtain

mb + tr(K)
=tr(bl,, +K)=tr(AKD'—=BK'"C") by taking the trace in (iv)
=tr(KD'A—-CTBKT) by permuting matrices
=tr(KD'A—-KB'C) by transposing the second matrix
= tr(K) by applying (iii);,

and this implies b = 0.

We remark that, alternatively, one can prove (b) as follows. Every g € G(k)
restricts to an automorphism of the centre Z of pL, which is represented
by Y = (2%) € GLy(k) with respect to the chosen basis z1,22, and sim-
ilarly for g=!. The image (2}, 25) of the pair (21,22) under g=! yields two
anti-symmetric bilinear forms which encode the Lie bracket; inspection of the
form associated to z4 shows that bl,, + dK should have the same rank as K,

namely m — 1; thus b = 0.

Proof of Theorem 1.10. In view of Theorem 2.3 and Proposition 2.4, it only
remains to show that the algebraic group G is connected. As

G(k) = By (k) x (SLa(k[K]) = Vst (K[K])®?)

by an isomorphism of group schemes over Z, the connectedness of G follows
from the fact that G is generated by one-parameter subgroups, which are,
in particular, affine irreducible varieties containing 1; for instance, see [27,
Prop. 1.16].
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For our next step we record also the following consequence of Theorem 2.3

and Proposition 2.4.

COROLLARY 2.5: Suppose that K has characteristic polynomial Ag = t™.
Then the group Go(k) is conjugate to the subgroup of GLoy,+2(k) consisting of
elements of the form

E
F

)

o Q

B
D
0 I,

where A, B,C, D € M,,(k) satisfy AD — BC = 1,, and are in Toeplitz form,
that is,

ar ay - Qm bi by - b
A= ai . , B— b1 ,
as by
a by
(2.14)
cCi C2 -+ Cm dl d2 e dm
C— C1 . : D= d1
C2 L dy
C1 dl

with suitable entries a1, . ..,dy, € k and 0 in white spaces, and E, F € My, 2(k).
The group G(k) is generated by Go(k) and the elements U(a), V (d) and W (c),
for a,d € k* and c € k, which are defined in the proof of Proposition 2.4.

2.3. CHANGE OF COORDINATES. For Ax = t™, the Lie lattice L is intimately
linked to the nilpotent group I'tm, defined in (1.3), and the algebraic automor-
phism group G plays a central role in the treatment of the pro-isomorphic zeta
function of I'ym; see Section 3. With a view towards the computation of the
pro-isomorphic zeta function of the group I'ym, we perform a change of basis
from

8 =(Z1,%2y s Ty Y1,Y25 -« - s Yy 21, 22)
to

8% = (1, YUmy T2y Ym—1s -« s Ty YL,y 22, 21)-
This basis change is achieved by conjugating first with diag(X,Is), already
built into Corollary 2.5 and reversing the order of yi,...,ym, and then
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with diag(®, (9{)), where © corresponds to the permutation of {1,2,...,2m}
given by

i—>2i—1 if 1 <i<m,
(2.15)

i 2(—m) iftm<i<2m.
From the results in Section 2.2 we obtain the following description of G(k),
with respect to the basis 8*.

PROPOSITION 2.6: Suppose that K has characteristic polynomial A = t™.
Then, with respect to the basis 8*, the elements of Go(k) take the form

X Xy X5 -0 X, % %
X, :
X3 k *
Xl X2 k% ok ’
1 0
1

with X;=(% %) e My(k) for 1 <i<m
and arbitrary entries in the positions marked *,

such that the matrices A, B,C, D defined as in (2.14) satisfy AD — BC' = 1,,,.
Furthermore, still with respect to the basis 8*, the group G(k) is generated
by Go(k) and

s ) ()}

V'(d) =T YU (@)™ 'V (d)™R(d)™) T

dm
= diag (dmllg,dmﬁg, oy dlg, Io, ( dm—1> )

W'(c)=T"'W(c)T

(2.17)

for a,d € k* and ¢ € k, where T = diag(X0,({})), the one-parameter
groups U(-),V(-),W(-) are as in (2.13) and

R(d) = diag(d,d,...,d,d"",d™*, ..., d" ", 1,1) € Go(k).
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COROLLARY 2.7: Suppose that K has characteristic polynomial Ag = t™.
Then the quotient of G by its unipotent radical N is isomorphic to GLy x GL;,
with an explicit section defined over Z. with respect to the basis 8* as follows:

GLo (k) x GLy (k) — H(k),

vl A 0
2 A

(Aa V) — I/A
0 A
v"™det A 0
0 v~ ldet A

Proof. We consider the affine subgroup N of G such that N(k) is generated
by elements of the form (2.16) with X; = I» together with elements of the
subgroup {W'(c) | ¢ € k}: see (2.17). The group N is a connected unipotent
normal subgroup of G.

Moreover, the quotient G(k)/IN (k) is generated by the block-diagonal matri-
ces diag(Xy, ..., X1,I2) with X; € SLy(k) and by the one-parameter subgroups
{U'(a) | a € k*} and {V'(v) | v € k*}; this analysis also provides a section
for G - G/N over Z. Finally G/N = GLy x GL; is reductive, and thus N is
the unipotent radical of G.

Remark 2.8: For computational purposes we replaced the generators U(-) and
V(-) by the generators U’(-) and V’(-). They generate the same torus, mod-
ulo Gg and up to coordinate change; see (2.17).

For similar reasons, a further simplification of the computation of the pro-
isomorphic zeta function can be achieved by replacing the one-parameter sub-
group W'(-) in (2.17) by ¢ — W"(c), where

W (¢) =T~ 'diag(exp(cEm + 3 (1 —m)cK), exp(cEy, — (1 —m)eK "), (L9)T.

This switch is inspired by Lie algebra considerations and works for an arbitrary
Z-algebra k if m is odd; for even m the switch requires that k is a Z[}]-algebra.
For the applications in the present paper, we do not need the variant for m = 2
and we use it only for m = 3. Hence no primes need to be excluded when we
compute the local pro-isomorphic zeta functions for Theorems 1.1 and 1.3.
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Example 2.9: In order to compute later on the pro-isomorphic zeta functions of
the groups I'ym for m € {2,3}, we record in these cases explicit descriptions of
the unipotent radical N of G, with respect to the basis §*. For completeness we
also provide a description for m = 1 which is straightforward; compare with [3,
§3.3.4]. We have

12 * ok

N(k)= 1 X | | A€k, and arbitrary entries » if m=1,
1 in the positions marked

12 X2 * *

0 I, = * . . .
N(k)= 1 (%) | X2 eMy(k), and arbitrary entries p if m=2,

r(A2
1 in the positions marked

L X X3 *ooX Xg,XgEMg(k’) with tI‘(Xg)ZO,

0 L Xo+ Al = % | x4 det(Xy) =0, A € &,
N(k)= 0 0 I x ok

Y and arbitrary entries
1 in the positions marked x

if m=3.

Indeed, for m = 2 we substitute X; = I in (2.16) and use the determinant
equation in Proposition 2.6 to obtain

S G B G I G R

with a1 —1=d; —1=b1=c¢1 =0, and therefore as+ds =0, namely tr(Xs)=0; this
accounts for the contribution of Go(k). The explicit form of W' (c) for ¢ € k is

1 0 ¢ 0 00

01 00 0O

W(e) = 1 0 00
01 00

1 ¢

0 1

Combining the contributions, the result for m = 2 follows.
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For m = 3, we start again by substituting X; = I5 in (2.16), which together
with the determinant equation

a; a2 as d1 d2 dg bl b2 bg C1 C2 C3 1
ar  ag d1 d2 - bl b2 C1 Cg = 1
al d1 bl C1 1

givesa; —1=dy —1=b; =c¢; =0 and
tr(Xz) = az+ b2 =0,
tr(Xs) + det(X3) = ag + ds + aada — baca = 0;
this yields the intersection of the unipotent radical N(k) with Go(k).

Offsetting W’() in accordance with Remark 2.8, we get the one-parameter
subgroup W”(-) which takes the form

I, 0 O
0 IQ CIQ
W'e)=| 0 0 I , forcek.
1 ¢
1

Combining the contributions, we arrive at the result for m = 3.

3. Machinery for computing p-adic integrals over algebraic groups

In this section we collect various facts and notation in order to use the technol-
ogy developed in [19, 23, 14, 4]. The general treatment produces a finite, but
typically unspecified set of ‘exceptional’ primes; we take care to verify that, for
the applications in this paper, there is no need to exclude any primes.

3.1. LIE CORRESPONDENCE FOR CLASS-TWO NILPOTENT GROUPS. Let I' be a
finitely generated torsion-free nilpotent group. Grunewald, Segal and Smith [19,
Thm. 4.1] showed that the local pro-isomorphic zeta functions of I" are closely
linked to the local pro-isomorphic zeta functions of a nilpotent Z-Lie lattice L
that can be constructed from I'; indeed,

Crp(s) = CLp(s)
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for almost all primes p. Furthermore, they remark that, if I' has nilpotency
class two, a suitable Lie correspondence can be implemented more directly,
and they highlight consequences for other types of zeta functions. The direct
correspondence has been reinterpreted and put to use, for instance, in [32,
§2.4.1]. For the record, we state and explain the implications of the special
construction in nilpotency class two for pro-isomorphic zeta functions, where it
is applied not merely to a group, but also to its lattice of subgroups; compare
with [6, Rem. 2.2].

Let T' be a finitely generated torsion-free class-two nilpotent group of Hirsch
length d, and let Z = Z(T") denote its centre. Then the isomorphism type of T’
is uniquely determined by

U/Z =(x1Z,...,2.2) 27 Z={yi, . Yd-a) =2
and the map
v:T/ZxT/Z = Z, (9Z,hZ)w [g,h].
In fact, this data yields a Z-Lie lattice

(3.1) L=Z7i1® ®Lia®Ln O ®Lys—a=T/Z& Z,

where the Lie bracket is induced by the anti-symmetric bi-additive map ~ and
the stipulation that Zy; ® - - - & Zyq—, be central in L:
d—a d—a
[%i, 5] Lie :Zci-%k gr  for 1<i,j<a, where v(z;,Z, z; Z) = x;, ;] :Hy,:i'j’k;
k=1 k=1
[Cbi, yj]Lic: [yj, yk]Liczo for 1 S ) S a and 1 S] S k S d—a.

Conversely, given such a Lie lattice one can define a class-two nilpotent group,
essentially by factoring out from the free class-two nilpotent group on d gener-

ators T1,...,%q,Y1,---,Yd—_a the relations
d—a d—a
~ A ~Cijik .. . . o
[T, &5 Lie = U’ for 1 <1i,j < a, where [&;, ;|1 = E Ci gk Yk,
k=1 k=1

[Zi,9;] = [95,96] =1 for1<i<aand1<j<k<d-—a.

Moreover, the two constructions set up a 1-to-1 correspondence, up to iso-
morphism, between finitely generated torsion-free class-two nilpotent groups of
Hirsch length d and class-two nilpotent Z-Lie lattices of dimension d. For short,
we call this the class-two Lie correspondence.
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We observe that, for any prime p, essentially the same constructions yield
a ‘local’ class-two Lie correspondence, up to isomorphism, between torsion-free
class-two nilpotent pro-p groups of rank d and class-two nilpotent Z,-Lie lattices
of dimension d; compare with [18, §1] and [32, §2.4.1].

PROPOSITION 3.1: Let I' be a finitely generated torsion-free class-two nilpotent
group of Hirsch length d, with centre Z = Z(I'), such that

U/Z = (x12,...,2,Z) 27" and Z=(yi,...,yq—q) = 24

Let L be the Z-Lie lattice associated to I' under the class-two Lie correspondence
as in (3.1).

Then there is an index-preserving 1-to-1 correspondence between finite-index
subgroups A < I' and finite-index Lie sublattices M < L. Furthermore, sub-
groups A satisfying A>T are bijectively matched with Lie sublattices M such
that the Z,-Lie lattices Z, ®z M and L, = 7Z, ®z L are isomorphic for all
primes p. In particular, this implies that

() = ¢ p(s) = ‘f:(s) for all primes p.
Proof. Tt was already remarked in [19], just after the proof of Theorem 4.1 in
that paper, that there exists an index-preserving 1-to-1 correspondence between
finite-index subgroups of I' and finite-index Lie sublattices of L.

Indeed, we can regard L as a graded Z-Lie lattice with respect to the decompo-
sition L = L(1y® L2, where L(;) = I'/Z and L3y = Z. Then there is a canonical
index-preserving map from the set of finite-index subgroups A of I" to the set of
finite-index graded Lie sublattices of L, with finite fibers; it maps A < T to the
graded Lie sublattice M) @ M) < L, where My = AZ/Z, M) = AN Z,
and the fiber above M (1) @ M(q) has size |L(g) : M(2y|* = |Z : AN Z|*. Similarly,
there is a canonical index-preserving map from the set of all finite-index Lie sub-
lattices M of L to the set of finite-index graded Lie sublattices of L, with finite
fibers; it maps M to the graded Lie sublattice M) & M) < L, where My is
the image of M under the projection from L to Ly along L2y, M2y = M NL ),
and the fiber above M(;) @ My again has size |Ls) : M(9)|*. Thus we obtain
a (non-canonical) index-preserving 1-to-1 correspondence between finite-index
subgroups of I' and finite-index Lie sublattices of L, simply by matching the
members of equal-sized fibres above graded Lie sublattices of L.
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Next we fix a prime p, a finite-index subgroup A < I' and its image M < L
under the 1-by-1 correspondence set up above so that A and M give rise to the
same graded Lie sublattice Mg, of L. It remains to justify that ﬁp =~ fp if and
only if Z, ® M = L,,. First we observe that Cr(A) = Z and thus ANZ = Z(A).
This implies that Mg, is isomorphic to the Z-Lie lattice associated canonically
to A via the class-two Lie correspondence. Furthermore, M,, and M are clearly
isomorphic as Z-Lie lattices. Since the constructions that lead to the class-two
Lie correspondences for discrete nilpotent groups and for nilpotent pro-p groups
are essentially the same, we see that the Z,-Lie lattice associated canonically
to the pro-p completion ﬁp can be obtained from M by extension of scalars,
i.e., it is isomorphic to Z, ®z M. The same analysis applies, of course, also
to I' in place of A. Applying the local class-two Lie correspondence, we deduce
that A, = T, if and only if Z, ® M = L,,.

Remark 3.2: In a preliminary version of this article we erroneously stated that
there was a simple map I' — L that would induce a 1-to-1 correspondence
between finite-index subgroups of I' and finite-index Lie sublattices of L with
the properties described in Proposition 3.1. Our misunderstanding was noticed
by Hyodo, who discusses the correspondence in more detail in [22, §7]. For
completeness, we recall that for odd primes p, there is, in fact, a more conceptual
way to establish the equalities

(R p(s) = ¢ u(s) = CE2(s)

which results from the Lie theory for torsion-free pro-p groups that are PF;
compare with [17].

3.2. LOCAL PRO-ISOMORPHIC ZETA FUNCTIONS AS INTEGRALS OVER REDUC-
TIVE GROUPS. Recall from Section 2 the notion of the algebraic automorphism
group Aut(L) of a Z-Lie lattice L; via a Z-basis of L, the group Aut(L) is
realised as an affine Z-group scheme G < GLg4, where d is the Z-rank of L. As
before, for any commutative ring R with 1 we write L. = R®yz L and, for short,

we set

L,=7,L forevery prime p.
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PROPOSITION 3.3 (Grunewald, Segal, Smith [19, Prop. 3.4]): Let L be a nilpo-
tent Z-Lie lattice of Z-rank d, and let G = Aut(L) < GL4 denote the algebraic
automorphism group of L with respect to some Z-basis. For each prime p, let

Gp=G(Qy) and G, =GpNMy(Zy)= Aut(g,L) NEnd(z,L),

equipped with the right Haar measure ug, on the locally compact group G
such that p,(G(Zy)) = 1. Then for all primes p,

(3.2) 0(5) = / det gl dpic, (9)
Gy

where §‘i§(s) enumerates Lie sublattices that are isomorphic to L.

We may decompose the 1-component G° into a semidirect product G°’=N x H
of its unipotent radical N and a reductive group H; compare with [21, §VIIL.4].
Fix a prime p and write G=G(Q,), N=N(Q,), H=H(Q,). Let V=q,L=Q/
be the Qg—vector space on which G acts from the right. In [14, §2], du Sautoy
and Lubotzky provide a general framework for reducing an integral of the
form (3.2) to an integral over a suitable subset Ht C H. Their reduction
depends, in general, on several technical assumptions (some of which can be
realised by excluding finitely many primes):

(a) G = G° is connected.

(b) There exists a vector space decomposition V = @;_, U;, with asso-
ciated flag V; = EB‘;:]. U;, 1 < j < c+1, such that each U; is H-
invariant, each V; is N-invariant and the induced action of N on each
quotient V;/Vji1, 1 < j <, is trivial.

(¢) A certain lifting condition holds with respect to this decomposition;
see [14, Assumption 2.3] for a complete description and Condition 3.4
below for a specific instance.

The requirement that the action of N on the quotients V;/Vji1 be trivial is
not actually needed for the reduction. However, it is usually desirable—for
both theoretical and practical applications. We will shortly see that in our
applications we need to drop this requirement.

We now specialise to the case where L is a D*-Lie lattice associated, via (2.2)
above, to the polynomial A(t) = ¢t™ for some integer m > 2. Note that L is a
class-two nilpotent Z-Lie lattice of rank d = 2m + 2 with rank-two centre and
Z(L) = [L,L]. Our aim is to identify modified versions of the above technical
assumptions in order to carry out a reduction of the integral in the spirit of
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du Sautoy and Lubotzky, without excluding any primes. In our setting, G is
connected and the splitting G = N x H is very explicit; see Corollary 2.7. Thus
we are not worried about (a). We write V' = U; @ Uy, where Uz = [g, L., L]
and U; is an H-stable complement to Us in V', corresponding to the abeliani-
sation of g, L; in the case of interest to us, U; is the Q,-span of a natural set
of generators for the Lie lattice L,. Note that U, is automatically invariant
under the action of G, while U; is H-invariant by construction; however, our
decomposition is ‘coarse’ in the sense that the actions of N on V/U; and on Us
are not trivial as stipulated in (b).

We now go about describing a weak version of (c) that suffices for our pur-
poses. Remarkably, [14, Assumption 2.3] does not apply to the D*-Lie lattice
associated to t3; compare with Remark 5.6 below. Let Ny = N Nker(¢}), where
Ph: G — Aut(V/Us) denotes the natural action. Since Us is N-invariant, we
may define the induced map 92: G/N1 — Aut(V/Usz) < GL2jn (Qp), and the set

(G/N1)" = by (12(G/N1) N Moy (Zy)),

where 2m = dim V/U, is the dimension of the abelianisation of L.

CoNDITION 3.4:  For every goN1 € (G/N1)™ there exists g € GT such that
goN1 = gN7.

Remark 3.5: The effect of Condition 3.4 is weaker than that of [14, Assump-
tion 2.3], because in our situation N does not act trivially on V/Us. Condi-
tion 3.4 is trivially satisfied due to the freedom to replace gy by g € goN1 such
that vg has zero component in Us for all v € U;. In matrix terms, this amounts
to replacing the top-right block ‘above the centre’ by zeros. The action of gg
and g on U; is the same and induced by the action on V/Us; as the action
on V/Us is ‘integral’, it is also integral on Us.

Define ¥¢: H — R3¢ by setting
190(h) = ,uN/Nl({uNl S N/N1 | uhN1 S (G/Nl)Jr}),

where p/y, denotes the right Haar measure on N/Np, normalised such that the
set ¥y 1 (12 (N/N1) N Ma,,(Z,)) has measure 1. Similarly, define 91: H — R>q
by setting

O1(h) = pn,({u € Ny [ nh € GT}),
where p, denotes the right Haar measure on /N7, normalised such that the set
N;" = Ni(Z,) has measure 1.
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Write ug, respectively py, for the right Haar measure on G, respectively H,
normalised such that pug(G(Z,)) = 1, respectively pp(H(Z,)) = 1. From
G =N x H one deduces (using Condition 3.4 and Remark 3.5) that

HG = KUN/Ny * BNy - HH-

Setting Gt = G N Map,12(Zy) and HT = H N Mgy,12(Z,), one obtains the
following by a mild adaptation of the proof of [14, Thm. 2.2] to the coarse
decomposition V = U; @ Us.

THEOREM 3.6: In the set-up described above, we have

[ 1detgl; duclo) = [ idethl; do(h) 01 (h) 1),
G+ Ht

In our applications we will see that 1 (h) is straightforward to calculate,
while ¥ (h) appears to be rather complicated to track down for large m. For
short, we set ¥(h) = Jo(h)V1(h) for h € H. In view of [14, Thm. 2.3], one
could suspect the function ¥: H — Ry to be a character on H, but it was
demonstrated in [6] that, for general class-two nilpotent groups, one cannot
expect this to be the case. Indeed, in Sections 4 and 5 we will see that ¢ is a
character for the group I';2, but that it is not a character for the group I';s; see
Remark 5.6. Subject to the modifications detailed above, the three technical
assumptions (a), (b), (c) of [14, §2] are, indeed, satisfied in our setting for every
prime p. For a general class-two nilpotent Lie lattice, our methods leading to
Theorem 3.6 work for almost all primes p and may prove to be useful in other
contexts, where [14, Assumption 2.3] does not hold.

3.3. UTILISING A p-ADIC BRUHAT DECOMPOSITION. We recall the machinery
developed by Igusa [23], du Sautoy and Lubotzky [14] and the first author [4]
for utilising a p-adic Bruhat decomposition in order to compute integrals over
reductive groups; the reference [4] is useful for practical purposes, where the
notation (and some further choices) are well-suited to the current paper. We
apply this theory in Sections 4 and 5.

Suppose that the group H is isomorphic to an affine Z-group scheme H<GL d
and denote by p: H-Ha corresponding isomorphism. In our applications, we
have H = GLy x GL; < GL3 and g is the isomorphism described in Corollary 2.7.
It is useful to keep this special situation in mind for a concrete interpretation
of the following general approach. We write H = H(Qp), equipped with the
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right Haar measure i, normalised such that p; (F(Z,)) = 1. We take interest
in the p-adic integral

Zit g6 = [ et el 001 dpy ()
Htp—1

where HTp~! denotes the full pre-image of HT under o (in the literature this
pre-image is usually denoted by H*, for short, but we prefer the more de-
scriptive form to avoid misunderstandings). In our applications, ¢ induces a
measure-preserving map from H to H, as H(Zp)g = H(Z,); in this situation,
one could even get away with ‘identifying’ H and H.

We fix a maximal torus T in H and assume that T splits over Q; this can be
arranged in our applications. Under an assumption of ‘good reduction’, elements
of T act by conjugation on minimal closed unipotent subgroups of H; this
action gives rise to a root system ® C Hom(T, Gp,). The (finite) Weyl group W
of H corresponds to Nyy(T)/T, where N (T) is the normaliser of T in H. We
suppress here some necessary requirements of good reduction since these will all
trivially hold in our applications; the technical requirements are detailed in [4].
We choose a set of simple roots aj, ..., a, which define the positive roots ®+.
Let 2 = Hom(Gy,, T) denote the set of co-characters of T. We refer to [14] for
a description of the Iwahori subgroup B < H(Zp) with respect to the simple
roots ar, . .., ay. Let m denote a fixed uniformising parameter for Z,, e.g., m = p.
The p-adic Bruhat decomposition theorem of Iwahori and Matsumoto [24] gives

H=H(Q,)= [[ Bwé(r)B and H(Z,)= [] Bws,
Ué%TéV weWw

where elements w € W in this context are to be read as coset representa-
tives g € Ng(T)(Zp). One defines E¥ = {¢ € E | £(7) € HYp ™'} and
considers, for w € W,

wEL = {6 € ET |a;(&(7)) € Zy for 1 <i <4,
and «;(&(m)) € pZ, whenever o; € w(®7)},
where @~ denotes the set of negative roots. Utilising symmetries in the affine
Weyl group and the fact that |det-¢|,, ¥(-2¢) are constant on double cosets

of B < H(Z,), (compare with [4, Lem. 3.10]) the following generalisation of
14, (5.4)] holds.
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PROPOSITION 3.7 (du Sautoy, Lubotzky; Berman [4, Prop. 4.2]): If T splits
over Q then, assuming good reduction,

a0 = 7 5 (] 5) e

weW ccwEY pedt

Idetf( )¢lp 9(E(m)*),

where len(+) is the standard length function on W.

Finally we recall a natural pairing between Z=Hom(Gy,, T) and Hom(T, Gy, ):
this is the map (8,€) — (B,€), where B(£(7)) = 7€ for all 7 € G. As
in [4, §5.2], it will turn out to be convenient to judiciously choose a basis
for Hom(T, Gy, ), consisting of simple roots and dominant weights for the contra-
gredient representations of irreducible components of g, and then to determine
a dual basis for Hom(G,,, T). This will enable an explicit description of the
set w=F.

Example 3.8: To illustrate the general set-up, we indicate how it can be used
to compute the pro-isomorphic zeta function of the D*-group I' = T'y of Hirsch
length 4, defined in (1.3). Proposition 3.1 shows that ¢ (s) = (7 ,(s) for all
primes p; here L is the Z-Lie lattice of Z-rank 4, defined by (2.2) with respect
to the Z-basis 8§, where K = (0) is the companion matrix of the prime poly-
nomial Ax =t. We consider the algebraic automorphism group G = Aut(L),
with respect to the Z-basis 8* = (1, y1, 22,21) as in Corollary 2.7 and Exam-
ple 2.9.

Let p be a prime; our aim is to calculate the local pro-isomorphic zeta func-
tion (2,1)(5). The coarse decomposition of V' = g, L described in Section 3.2 is
not suitable, due to the fact that here the centre does not coincide with the
derived sublattice of L. Instead we require a refined decomposition. Setting

Up =spang, {z1,y1}, Uz =spang {22}, Us=spang {z1},
we write
G = G(@p)v H = H(Qp)a N = N(Qp)?

these groups act on V' = o, L = U; ® U2 ® Us in a suitable way. We now require
the following subgroups of the unipotent radical: N7 = N N ker(v5), where
Py G — Aut(V/(Usz + Us)) denotes the natural action, and No = N Nker(3),
where ¢5: G — Aut(V/Us) denotes the natural action. By Corollary 2.7, the
elements of the reductive subgroup H are of the form

(3.3) diag(A,vdet A,det A), where (A4,v) € GL2(Qp) x GL1(Qp),
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and, according to Example 2.9, elements of NV take the form

I

*
1 , with AeQ, and arbitrary entries in the positions marked .
0

D 3

0
0
As explained above, we can utilise Proposition 3.3 and Theorem 3.6 to com-
pute ijp(s) via an integral over HT. A short calculation (using a slightly

different analysis of ¢, based on [14, §2] with respect to the decomposition
Uy & Uy & Us) shows that, for h € HT of the form (3.3),

d(h) = |det A|,®[v], 2.

From here on a direct calculation could be carried out; but we prefer to illustrate
the use of the Bruhat decomposition. We observe that the morphism

0: H=GL, x GL; — H, (A,v) — diag(A,vdet A, det A)
induces a measure-preserving isomorphism H= H(Qp) — H such that
H* 0" = {(4.) | 0,(4) > 0 and v,(det A) + v, (1) > 0},

where vy, : Qp, — ZU{oo} denotes in the first place the standard p-adic valuation
map and also the map M3(Q,) — ZU {oo}, (ai;) — min{vp(a;;) | 1 < 4,5 <2}
Thus we obtain

§£7p(s) = / |det A|p3575 |1/|1f72 dup(A,v).

(Av)eH
with v, (A)>0,
vp(det A)4v, (v)>0

For convenience, we consider H = GLy x GL; as a subgroup of GL3, embedded
as block matrices via (4, v) — diag(A,v). In particular,

T= T(Qp) = {diag(Ah)\Qay) | A15A27V S Q;}

is a maximal torus in H. By Proposition 3.7 we obtain

Epls) =Y 13 Ja(em)l, " 1det(£(m)?)]; 9(E(m)®),

weW EcwEL

where we choose o € Hom(T, Gp,), a(diag(A1, A2, 7)) = A Ay ! as the single
positive root, and we have

w=f ={¢ € EY | a(¢(m)) € Zp, and a(é(7)) € pZ, if w = wo},
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where the Weyl group is W = {1,wp}. In order to describe the set w=} we
consider dominant weights for the contragredient representation, following [14].

These are given by
wit(h) = Xa,  wyt(h) = MAev  for h = diag(\, Mo, v) € T.

It follows that «, wfl,wgl form a Z-basis for Hom(T, G,,) whose Ny-span con-
tains all the weights of p. Thus to detect whether an element h € T is integral
it is sufficient to check whether a(h),w; ! (h),w;y () all lie in Z,. We rewrite
a1 =a, ag =wi ', a3 =w, " and find that &, &, & € = defined by

&1(1) = (7, 1,7'_1), & (1) = (7,71, 7_2), &()=(1,1,7) forT € Q;

form a dual basis so that

1 ifi=j,
(o, &) = e
0 ifi#j.
A general element of = has the form & = £1&52£5® with e = (eq,e2,e3) € Z3

and satisfies £ () = diag(me1tez re2 g—e1-2e2+€) Hence
()8 = diag(m®rHe2 o2 g3 ge1t2ez)
and we read off
et &a(m)2]y = pBaHter s (e, (m)2) = paoertaes,
Note that |a(&e ()| = p{®fe) = plere) = pet and we can rewrite
wEL = {6 €E | (a;,&) >0 fori € {1,2,3}, and (a1,&) > 0 if w = wp},
since a; € w(®7) if and only if w # 1. Thus we obtain

21 p0p(5) = D p ) > ple) |det (m)e| s 9(&(m)0)

weW EcwEL
_ § :p—len(w) § p(4—25)€1+(6—4S)€2+(2—S)€3
weW eeNO3 with
e1>0 if w#1

1 o 1 1 p4—2s
T (1 - pbts)(1 — p2e) (p 1 pAe2s Troe 4725)
- 1

(1 p2)(1 —pt=2)(1 )’

confirming the formula that we reported in the introduction, based on [3, §3.3.4].
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4. The local pro-isomorphic zeta functions of the group I';:

In this section we consider the pro-isomorphic zeta function of the D*-group
I’ =Ty of Hirsch length 6, defined in (1.3). We prove Theorem 1.1 and obtain
Corollary 1.2; it turns out that we can proceed as in Example 3.8, taking care
of a little extra complexity along the way.

Proposition 3.1 shows that Cﬁp(s) = §£7p(s) for all primes p, where L is
the Z-Lie lattice associated to I'. In our setting, L is the Q-indecomposable
D*-Lie lattice L of Z-rank 6, defined by (2.2) with respect to the Z-basis 8,
where K = () is the companion matrix of the primary polynomial A = 2.
We consider the algebraic automorphism group G = Aut(L), with respect to
the Z-basis 8* = (z1, y2, x2,Y1, 22,21) as in Corollary 2.7 and Example 2.9.

Let p be a prime; we will set about calculating the local pro-isomorphic zeta
function ijp(s). In the notation of Section 3, we set Uy = spanQp{zl, Y2, T2, Y1}
and Up = spang {22, 21}. We write

G = G(Qp)v H= H(Qp)a N = N(Qp)§

these groups act on V = g, L = U1 ® Us. By Corollary 2.7, the elements of the
reductive subgroup H are of the form

vA 0 0 0
0 A 0 0
0 0 v%detA 0
0 0 0 vdet A

(4.1) ,  where (4,v)€GL2(Q,) x GL1(Qy).

The description of the unipotent radical given in Example 2.9 shows that ele-
ments of NV are of the form

12 B x *
0 12 *
. where B€ M
0 0 1 tB where 2(Q)
00 0 1

and there are arbitrary entries in the positions marked x. As explained in
Section 3, we can utilise Proposition 3.3 and Theorem 3.6 to compute (fjp(s)
via an integral over H™.

We now set about calculating the functions vy, defined in Section 3; we
refer to Section 3.2 for definitions of N1, pun/n, and uy,. Noting that

N/N1=Q, and N =Q,
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we obtain for h € HT of the form (4.1)
Jo(h) = |det A, and  91(h) = [V det A%[ %,
hence
O(h) = do(h)91(h) = |det Al Ov| 2

in particular, ¥: H — R is a character.
We observe that the morphism

0: H=GL, x GL; — H, (A,v) — diag(vA, A, v? det A, v det A)
induces a measure-preserving isomorphism H = H(Qp) — H such that
HY o' = {(A,v) | vp(A) > 0 and v, (A) + v,(v) > 0},

where (as in Example 3.8) v,: Q, — Z U {oo} denotes the standard p-adic
valuation map as well as the map Ma(Q,) — Z U {o0},

(aij) = min{vp(a;;) [ 1 <45 < 2}
Thus we obtain

(4.2) b (s) = / [det A| 15710 [1] 35712 dpi, (A, v).

(Av)eH
with v, (A)>0,
vp(A)+vp(¥)20

For convenience, we consider H=GLyxGL; as a subgroup of GL3, embedded
as block matrices via (4, v) — diag(A,v). In particular,

T = T(Qp) = {diag()\l,)\g,u) | )\1,)\2,V S Q;}

is a maximal torus in H.
By Proposition 3.7 we obtain

Epls) =D p ' Y fal€m)ly  1det(E(m)9)] 9(Em)?),

weWw £Ew5$

where we choose o € Hom(T, Gy,), a(diag(A1, A2, ) = My " as the single
positive root, and we have

w= ={¢ € EY | a(é(m)) € Zp, and a(é(T)) € pZ, if w = wo},
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+
w We

where the Weyl group is W = {1,wp}. In order to describe the set w=
will need to consider dominant weights for the contragredient representation,
following [14]. These are given by

wit(h) = Xav, wyt(h) =g, wil(h) = M, wit(h) = MAer

for h = diag(A\;,\e,v) € T. Tt follows that a,w;',wy' form a Z-basis
for Hom(T, Gy,) whose Np-span contains all the weights of p. Thus to de-
tect whether an element h € T is integral it is sufficient to check whether
a(h),w;t (h),w; ' (h) all lie in Z,. We rewrite a; = a, ag = w; ', a3 = w; " and
seek a dual basis, namely elements &1, &2, €3 € = such that

1 ifi=y,

0 ifi#j.
A routine calculation shows that the following elements suffice:

&(r)=(r,1,1), &(r)=(1,1,7), &(r)=(r,7,7 ') forTe Q.

A general element of = has the form & = £1&5265® with e = (eq, e2,e3) € Z3
and satisfies &e(7) = diag(m®1 1 7® w27¢s). Hence

(@,§5) =

ge(ﬂ')g — diag(W€1+€27ﬂ.6’2,7_‘_61“1’6’3,7.‘.63 7T61+282 7Tel+ez+e3)

) )

and we read off
|det o (m)?] = p-Uertdeatden)s (e (r)e) = ploer+iZes+ses
Note that |a(&e ()|t = p{®fe) = plar€e) = pet and we can rewrite
={(e€Z|{w,& >0forie{l,2,3} and {(a1,&) > 0 if w = wy},

since oy € w(@_) if and only if w # 1. Thus we obtain

foop(s) =D p ') " plet|det (m)e| s 9(&(m)0)

weW tewEL
_ Z p—len(w) Z p(11—45)€1+(12—58)62+(8—3S)63
wew ecNg
with e1 >0 lf w#1
1 0 1 1 p11—4s
:(1 — pl2-55)(1 — p3—39) (p ] pli-ds T 1 p1174s)
1 +p1074s

- (1 — p8=3s)(1 — pli—4s)(1 — pl2-55)’
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proving Theorem 1.1. The first part of Corollary 1.2 follows directly from
well-known properties of the Riemann zeta function. For the assertion about
the asymptotic growth of pro-isomorphic subgroups in I', we use a Tauberian
theorem as recorded in [12, Thm. 4.20]. In the notation employed there, we
take a = 3, g(s) = (), + 91(s))¢(5s — 12)¢(4s — 10)/¢(8s — 20) with gi(s)
holomorphic such that g1(3) = 0, and w = 2 so that (1.4) holds for

_gla) _  CBK@),
al(w) 3M(2) ¢@4) ’

Ct2

using the precise values I'(2) = 1, ((2) = ”62 and ((4) = gg and the esti-

mate ((3) ~ 1.202057 we arrive at the claimed description of the invariant c;z.

5. The local pro-isomorphic zeta functions of the group I';s

5.1. COUNTING POINTS ON A QUADRATIC SURFACE. In preparation for com-
puting the pro-isomorphic zeta function of the group I';s, we study a certain
arithmetic function. In order to make the analysis transferable to a more gen-
eral setting, considered in Section 7, we work over a compact discrete valuation
ring o with maximal ideal p = wo and residue field o/p = F, of size ¢ and
characteristic p. Our primary interest is in the basic set-up:

0=2p, ©=pLy, Lp/pLy,=T,.
Definition 5.1: For «, 8, m € Ny and an indeterminate ¢, let
fla, Bym) = #{(2,y,2) € (o/n™0)* | 7%a® + 7y = 0},
Fap(t) =" fla,B,m)t™,
m=0
and, for B € Ny, let
Fyg(t) =Y f(0,8,m)t™.
m=p
Observing that for «, 5, m € Ny one trivially has

(5.1) fla+1,8+1,m+1)=¢f(a,B,m),

we focus on the cases where either a or 3 is zero.
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PROPOSITION 5.2: For a € Ny, we have
_ _ 2o
(i) Faolt) = ¢t Fyo(t) + 0050
" _Ple1eLgl
(i) Fo.a(t) = (q5t2)La/2J Foa(t)+(1+ q°t) ! qlfqé’»; °,
where o = 0 for o even and o = 1 for « odd. In particular,
1 — ¢%t? 1—2¢3t2 + ¢*t?
Fool(t) = d Fpi(t)= .
R R (R e
To prove Proposition 5.2 we use the following recurrence relations. Parts (1)
and (2) of Lemma 5.3 below form the basis for the recursion in «, 8 given in (3)
and (4). Together with (5.1) they determine f(«, 3, m) completely.

LEMMA 5.3: For «, 8, m € Ny the following hold:

(1) £(0,0,m+2) =¢*(¢* — 1)g*™ + ¢*f(0,0,m),
(2) f(0715m+2)_2q (¢ —1)g 2m+q3f(0,1,m)
(3) f(0,8+2,m+2)=¢q"f(0,8,m),

(4) fla+1,0,m+1)=q(qg—1)¢*" + ¢*f(a,0,m).

Proof. To prove (1), we observe that for the finite field Fy, the set of F,-rational
points of the affine variety defined by x2? + yz, viz.

{(z,y,—y'2?) |z € Fg,y € qu} W{(0,0,z) | z € Fy},

has ¢? points and is smooth away from the origin. By Hensel’s lemma each of

the (¢>—1) smooth points lifts to ¢2(™*1 solutions of 22 +yz = 0 over o /7™ *2

m—+2

O.

All the other solutions over o/x
m+1

o are of the form (mzx,my,7z), thus z,y, z

are perturbations in o/7™% 1o of solutions modulo 7™ and the claim follows.
The argument for part (2) is similar, but as the F,-points of the variety

defined by z? + myz = 22 are all non-smooth, we consider higher levels. The

set of solutions of 2% + 7yz = 0 in (o/7™+20)3 is a subset of the set

{(rz,y,2) € (o/7™F20)? | exactly one of y or z is a unit}

W{(rx, my, 72) € (0/7™20)® | 2® + myz =0 mod 7™}.

The number of solutions of the second type is ¢®f(0,1,m). For the first type,
assuming that z is a unit and 7 | y, we are left to solve 722 + jz =0 mod 7™
where * = 7% and y = wy. Note that y is completely determined by z, z.
Counting in redundancy from the reduction, we find (¢ — 1)¢*>™*3 solutions. By
symmetry, the total number of solutions for this type is 2(g — 1)g?™*3.
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To prove part (3) consider the equation 22 +77+2yz = 0 over o/7™%20. Note
that a triple (x,y, z) is a solution if and only if x = 7Z, and the triple (Z,y, 2)
is a solution of the equation 72(#2 + m?yz) = 0 over o/7™*+20. Thus

f(0,8+2,m+2)=q"f(0,8,m),

where the factor ¢° comes from the redundancy arising from the reduction
to &2 + Pyz =0 mod 7™.

For part (4), to solve the equation 79122 4+ yz = 0 over o/p™*!

0 we con-
sider two cases: that y is divisible by 7 or that y is a unit. Using arguments
similar to those above, we find in the first case ¢* f(c, 0, m) solutions and in the

second q(q — 1)¢g*™ solutions.

Proof of Proposition 5.2. We first compute Fpo(t). We multiply both sides of
equation (1) in Lemma 5.3 by t™*2 and sum over the non-negative integers to

obtain

> F0,0m+ 2t =2 (¢ = 1) Y @247 Y f(0,0,m)m 2,

m=0 m=0 m=0
Using the fact that £(0,0,0) =1 and f(0,0,1) = ¢* we get

20,2 2
q*(¢° — 1)t 3,2
Foolt) —1—¢*t= 2 Foo(t
0,0(t) q 1— 2t + ¢°t" Fo0(1),

which implies the formula for Fy ¢(t). The derivation of Fy1(t) is similar.
To prove part (i) we multiply both sides of equation (4) in Lemma 5.3 by t™*!
and sum over the non-negative integers. This gives

Do Ha+L0,m+ ) =q(g—1) Y ™M 4D fa,0,m)tm
m=0

m=0 m=0
~ - ~

~ ~ i
Fat1,0(t)—1 q*tFa,0(t)

and thus yields the recurrence

2 + q2tFo¢,0(t)'

1
Fa+1,0(t) = ¢t

1_
A recurrence of this form, namely, A,41 = d+ cA, (o € Np), has the following
solution

_

1
(52) A, =d 1 ¢ + CQA(), a € Ny,

which implies part (i) of the proposition.
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Similarly, to prove part (ii) we multiply both sides of equation (3) in Lem-
ma 5.3 by ™2 and sum over the non-negative integers:

Foata(t) = 1—¢t =Y f(0,a+2,m+2)t™"

m=0
=q Z (0,0, m)t™ % = P12 Fy o ().
m=0

We get the recurrence relation
Foat2(t) = L+ ¢*t + ¢°t*Fo o (1)

This is solved separately for even and odd a, via (5.2), giving

1—¢olalg2ls)

1— q5t2 + (q5t2)L0‘/2J FO,a(t)'

Foa(t) = (1+4¢%)

We need to pin down the variant Fg,(t) of Fp (), which was introduced in
Definition 5.1.

LEMMA 5.4: For o € Ny, set a =0 for a even and o« = 1 for o odd. Then

Fio(t) = (@) /2 E (1)

o o 242
— g%t Foot) = q% t° (gD goe2) for o even,
- 5(a71)to¢—1 F t 1) = 50‘71to¢ (1—qt)(1+q2t) f dd
: (Foa(t) 1) =g 2 %4 2 gspzy for aodd.

Furthermore, employing another indeterminate Y, we have

e o (1= at)(1+qt +Y?t(1+ ¢*t))
LYV = ey ey )

Proof. Multiplying both sides of equation (4) in Lemma 5.3 by t™*2 and sum-
ming over m > «a, we obtain

Faya(t) =D f(0,a+2,m+2)t"2 =g Y £(0,a,m)t™ = ¢*12F;,(t).

m=« m=o

Writing o = 2j 4+ ¢ with ¢ € {0, 1}, we deduce that
F(;(,2j+a (t) = qut2jF(Ia (t)

By substituting Fj(t) = Foo(t) and Fg(t) = Fo1(t) — 1 we arrive at the
desired formula.
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The last part follows by substituting the formulae obtained into

S OYOFS () =Y Y, () + Y YIRS, ().
a=0 7=0 3=0

5.2. APPLYING A p-ADIC BRUHAT DECOMPOSITION. We now turn our attention
to the pro-isomorphic zeta function of the D*-group I' = I';s of Hirsch length 8,
defined in (1.3), and we prove Theorem 1.3.

Proposition 3.1 shows that Cﬁp(s) = Cﬁp(s) for all primes p, where L is the
Z-Lie lattice associated to I'. In our setting, L is the Q-indecomposable D*-Lie
lattice L of Z-rank 8, defined by (2.2) with respect to the Z-basis 8, where

K =

o o O

1
0
0

S = O

is the companion matrix of the primary polynomial Ax = t2. We consider
the algebraic automorphism group G = Aut(L), with respect to the Z-basis
8* = (x1,ys, T2, Y2, T3,Y1, 22,21) as in Corollary 2.7 and Example 2.9.

Let p be a prime; we will set about calculating the local pro-isomorphic zeta
function (7 ,(s). In the notation of Section 3, we set

Ul = Spa'n@p {xla Y3, T2,Y2, T3, yl} and U2 = Span(@p{22a Zl}-
We write
G = G(Qp)v H= H(Qp)a N = N(Qp)§

these groups act on V' = g, L = Uy © Uz. In accordance with Corollary 2.7, the
elements of the reductive subgroup H can be written in the form

v 1A 0 0 0 0
0 A 0 0 0
(5.3) 0 0 vA 0 0 ,
0 0 0 wvldetA 0
0 0 0 0 det A

where (4,v) € GL2(Q,) x GL1(Q,); observe that we have performed a routine
reparametrisation v + v~ and A — vA: for our computation of ¥ we prefer
to have the powers of v appearing along the diagonal to be ‘small’.
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The description of the unipotent radical given in Example 2.9 shows that
elements of N are of the form

I, B C * ok

0 Io B+ x =«
(5.4) u(B,C)=1] 0 0 I, x x|,

0 O 0 1 A

0 O 0 0 1

where B, C' € M3(Q,,) and A € Q, with tr(B) = 0, tr(C)+det(B) = 0, and there
are arbitrary entries in the positions marked *. As explained in Section 3, we

—~

can utilise Proposition 3.3 and Theorem 3.6 to compute g“ﬁp(s) via an integral
over HT.

We now return to our coarse decomposition and set about calculating the
functions ¥y, v defined in Section 3; we refer to Section 3.2 for definitions
of N1, punyn, and pp,. Noting that Ny = 1§7 we obtain for h € HT of the
form (5.3)

Y91 (h) = [v " det 142|p_6 = |det A|p_12|u|§,
hence ¥(h) = 9o (h)01(h) = Vo(h)|det Al '?|v]S. We defer until the next section
a calculation of ¥y, since this is the most involved and lengthy aspect of the
analysis.

We observe that the morphism

0: H=GLy xGL; - H, (A,v)+— diag(r 14, A,vA, v det A, det A)
induces a measure-preserving isomorphism H = H(Qp) — H such that
Ht o™t = {(A,v) | vp(A) > 0 and v,(A) — |vp(v)| > 0},
where v, is defined as in Example 3.8 and in Section 4. Thus we obtain

(55) () (s) = / et L3512 b 4590 ((A, 1)) dpip(A, ).

(Av)eH
with v, (A)>0,
vp(A)+|vp ()20

For convenience, we consider H = GLy x GL; as a subgroup of GL3, embedded
as block matrices via (4,v) — diag(4,v). In particular,

T= T(Qp) = {diag(Ah)\Qay) | A15A27V S Q;}

is a maximal torus in H.
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By Proposition 3.7 we obtain

o)=Y p ' 3" Jalg(m)], " [det(&(m)?)]5 9(E(m)°),
weW 5Ew—w
where we choose @ € Hom(T, Gy,), a(diag(A, A2, v)) = )\1>\2_1 as the single
positive root, and we have

wEf = {¢ € % | a(&(n)) € Zy, and a(&(n)) € pZ, if w = wo},

+
- we

where the Weyl group is W = {1,wp}. In order to describe the set w=
will need to consider dominant weights for the contragredient representation,
following [14]. These are given by
wit(h) =dav ™, wyl(h) =Xe, wyt(h) = Doy,

wit(h) =MAer™h, wit(h) = Atk
for h = diag(A1, \2,v) € T. Tt follows that a,wl_l,wgl form a Z-basis for
Hom(T,Gy,). Unlike the situation in Section 4, the Ng-span of these three
dominant weights does not contain all the weights of p. In the current situation
an element h € T is integral if and only if a(h),w; ' (R),w; ' (h),ws ' (h) all lie
in Z,. Note that w; ! = wiw; 2. We rewrite a; = @, as = w; ', a3 = w, ' and
seek a dual basis, namely elements &1, &2, €3 € = such that

1 ifi=y,
0 ifi+j.
A routine calculation shows that the following elements suffice:

(1) = (1,1,1), &(r)=1,1,77Y, &(r)=(r,7,7) forT € Q-

(i, &) =

A general element of = has the form & = £71¢,265® with e = (eq, e2,e3) € Z2
and then

(5.6) o) = diag(m® T3, 18 g~ c2),

Hence

ge (ﬂ-)Q — dia’g(ﬂ-ﬁ +e2 , e? , P} +es3 , e , qe1—e2 +2e3 , 7T—€2+263 , et +eax+tes , e +2e3)

and we read off

|det ge(ﬂ')9|; — p_(5el+€2+9€3)8, (ge( ) ) 12€1+6€2+18€3
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Note that |a(&e(m))| ™1 = pl®ée) = plat€e) = per and we can rewrite

wEL ={¢€Z | {a;,£)>0 for i€{1,2,3}; (w3, €) >0, and (a1, &) >0 if w=wp}
={& |e;>0forie {1,2,3}; 2e3 > ey, and e; > 0 if w = wy},

since a; € w(®7) if and only if w # 1 and w; ' = wiw, 2 = ay 'a3. Writing

(57) C= {e < N03 | 2e3 > 62}
we obtain
Z’H,Q,'ﬂ,p(s)

_ Z ' len(w) Z p(‘l»f) |det§(7'r)g|; 19(5(7'(')9)
(58) weWw ECwED

_ Z p—len(w) Z p(13—5s)e1+(6—s)e2+(18—9s)e3190(56(77)9)_

wew e € C with
e1>0 if w#l

5.3. DETERMINING THE FUNCTION dy. In view of (5.3) and (5.8), we need only
compute g for elements of H of a rather special form; for n, m,k € Z we set

Bo(, 7™, 1) = Do (ding(x", 7™, 7*)2)
k ._m

—k n m n+k m-+k m+n—k
™ )

:ﬂo(dia’g(ﬂ-n7 ) T y T, T, T ) T ’ ™ )

m+n))

where the first expression is a mild, but convenient abuse of notation. Recall
that we could choose m = p, but prefer to make clear the different roles played by
m and p. This is beneficial also with a view toward the more general situation
considered in Section 7; we refrain from generalising all the notation in the
current section as we did in Section 5.1, but explain in Remark 5.7 how one
particular step carries over. We assume throughout that n > m since this is
the only case of interest to us; see (5.6). Write [ = n —m € Ny, and recall from
Definition 5.1 with © = Z,, that

fla,B,m) = #{(x,y,2) € (Zp/mep)3 | 7% + wPyz = 0}

for «, B, m € Ny.
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LEMMA 5.5: Forn,m,k € Z with l =n —m > 0, we have
190(7_‘,71771_771771_](}) _ p4k+3m+n 15(71'", 7_‘,m, ﬂ,k),

where 15(7r", 7™, %) equals

p3FHF(1,0,m — k) if k>0 (Case 1),
p L F(2k+1,0,m+k) if max{—m,—{}<k <0 and 2k+1>0 (Case 2a)
PRt F(0,—2k—1,m—k—1) if max{—m,—1}<k<0 and 2k+1<0 (Case 2b),
p~lf(0,1,n+ k) if—m <k< -l (Case 3).

Remark 5.6: It follows from Lemma 5.5 that ©9: H — R<g is not a character.
For instance,

D2, 72,1) = £(0,0,2) = p* +p* — p? # p* = £(0,0,1)? = J(m, 7, 1)

In fact, this calculation shows that the lifting condition [14, Assumption 2.3]
fails for all primes p. Suppose that the lifting condition were to hold. By [4,
Lem. 3.12], it would follow that ¢ is a character on subsets of a maximal torus
of H with a designated ordering of valuations along the diagonal. It is readily
seen that the elements diag(n?,72,1)¢, diag(m, 7, 1)¢ belong to such a subset.

Proof of Lemma 5.5. We consider the action of a diagonal element
h = diag(w"_k m—k n _m n+k m+k m+n—k

m—+n
’7T )7T )7T ’7T )7T )7T ’7T )

on an element

L (¢2%) (§arihea) * *

0 I (At“ /\Ea) * %
(5.9) u = 0 0 I, * x|,

0 0 0 1 A

0 0 0 0 1

the latter being an explicit parametrisation of (5.4). The situation of interest
to us, i.e., when h is integral, is equivalent to the conditions n > m > |k|. We
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obtain the following necessary and sufficient conditions for uh to be integral:

(5.10) vp(a) > —m,

(5.11) vp(b) > —m + max{0, —k},
(5.12) vp(€c) > —n + max{0, —k},
(5.13) vp(d) > —n —k,

(5.14) vple) > —m — k.

(5.15) up(f) > —n—k,

(5.16) vp(a? +bc—d) > —m — k,

(5.17) vp(A+a) > —n—k,

(5.18) vp(A—a) > —m—k,

(5.19) vp(A) > —m—n

Condition (5.19) is implied by conditions (5.10) and (5.18); it is therefore re-
dundant. One readily sees the following equivalences:

(5.13) : v,(d) > —n —k <= v,(a® +bc) > —n—k, if (5.16) holds;

(5.17): vy(A+a) > —n—k <= vp(2a) > —n —k, if (5.18) holds;
so we may replace (5.13) and (5.17) respectively by
(5.13)’ vp(a® +bec) > —n — k,
(5.17) vpla) > —n —k — 4,

where 6 = v,(2) € {0,1} takes the value 1 for p = 2 and the value 0 otherwise.

In our calculation we use the fact that the measure i/, may be treated as
an additive measure on the parameter space QIZ with (N/N1)(Z,) corresponding
to Z; . Indeed, using the notation introduced in (5.4), we see that the map

M2(Qp) X sl2(Qp) = N/N1(Qp), (X,Y) = u(X,Y)

is a homeomorphism. The claim thus follows from [26, Thm. 8.32] and the fact
that the groups involved are unimodular.
For fixed parameters (a,b,c) € (@5’ , we obtain

poa{(d.e, ;1) € Q, | (5.14), (5.15), (5.16), (5.18) hold} = p*m+n+4k,
It follows that Jo(n™, 7™, k) = p3mtntdk g(zn 7m k) where

I, 7™, ) = pgz{(a,b,¢)€Q | (5.10), (5.11), (5.12), (5.13)', (5.17)" hold}.
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For convenience, we summarise the conditions (5.10), (5.11), (5.12), (5.13)’
and (5.17)":

vp(a) > max{—m,—n—k — 4}, vp(b) > —m + max{0, —k},
M vp(€c) > —n + max{0, —k}, vp(a? +bc) > —n — k.
The next step is to show that we can drop J, even for p = 2. Suppose for
a contradiction, that there are a,b,c € Q, satisfying (f) and such that
vp(a) = —n — k — 1 > —m; in particular, £ < 0. Then

vp(a®) = —2n—2k—2< -n—k

and we conclude from (5.13) that v,(bc) = vp(a?) = —2n — 2k — 2. On
the other hand (5.11) and (5.12) yield vp(be) > —n — m — 2k. This gives
—2n —2k — 2 > —n — m — 2k, hence m — 2 > n, a contradiction.

Remark 5.7: The last consideration carries through also in a more general set-
ting, considered in Section 7. If we work over a compact discrete valuation
ring o with valuation v, replacing Z, with valuation v, then § = v,(2). If o
has residue characteristic 2 this is the absolute ramification index of o, and the
assumption v,(a) = —n —k — & > —m with § € {1,...,6} leads again to a

contradiction.

Thus we can work with the simpler set of conditions
vp(a) > max{—m, —n — k}, vp(b) > —m + max{0, —k},
® vp(c) > —n +max{0, -k}, wy(a® +bc) > —n —k.
We perform a change of variables Q> — Q2 by
(a, b, c) — (%y, Z) — (apmin{m,n-i-k},bpm-i-min{O,k},cpn-‘rmin{o,k})_
The new variables are all unconstrained elements of Z,, and the change of

variables introduces a Jacobian equal to
min{m,n+k}+m-+n+min{0,2k}

p
It follows that
@(ﬂ", ", 7Tk)
=pgsf{(a,b,c) € Q) | (1) holds}
—pmin{m,n+k}+m+n+min{0,2k}

. MZ;‘{(ZE; Y, Z) EZS |p72 min{m,n+k}z2 + pfmfnfmin{OQk}yZEO mod pinik}.

Lemma 5.5 now follows immediately by specialising to the four cases.
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In order to continue the calculation paused at (5.8), we recall that
o =&1"65°65°
and, setting
(5.20) ne=-e1+es, Mme=e3, ke=e3—ea, thus le=mne—me=e,

we see from (5.6) that & () = diag(m®1 7, 7 1e3¢2) = diag(nme, 7™, wke).

Applying Lemma 5.5 and using (5.20) to resubstitute, we obtain

(5.21) Do (Ee(m)?) = p 12T J(g (7)),
where

perBeat3es (o) 0, en)
if e2 < e3 (Case 1),
perte=es fle) — 2eq + 2e3,0, —ea + 2e3)
- - if e3 < e3 < ez+ min{e, ez} and 2e5 < e; + 2e3 (Case 2a),
prerbeatses £(0, —ey + 2es — 2e3, —e1 + €2)
if e3 < e9 < es+ min{e, ez} and e; + 2e3 < 2e5 (Case 2b),
P~ f(0,e1,e1 — ez + 2e3)

if 1 + e5 < ea < 2e3 (Case 3).

Referring to (5.8), we obtain

(5.22) Zigwp(s) = D p7 '™ " XPXPXE D(Ee()),
weWw e € C with
e1>0 if w#l
where

Xl _ p14—5s’ X2 _ p2—s, X3 _ p26—95.

5.4. DECOMPOSING THE POLYHEDRAL CONE. In preparation of the final stage
of the calculation, we consider the following subsets of the ‘integral’ cone C
introduced in (5.7); each subset is, in fact, a submonoid of N§. Refer to Figure 1
for a pictorial illustration.
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Figure 1. Decomposition of the cone C.

Definition 5.8: Write

and set

Cijr = spany, {Vvi, Vj, Vi }
Cijr+ = spany, {vi,v;} +Nvy
C;; = spany, {vi,v;}
Cij+ = Nov; + Nv;
€% = {(e1,e2,€3) € Cx | €1 > 0}

for 1 <i,j5,k <6,
for 1 <i,5,k <6,
for 1 <1i,5 <6,
for 1 <i,5 <6,

for any (possibly empty) index .

Observation 5.9: The elements vi,vs, v3 are the completely fundamental ele-
ments of €, while v4 = J(v2 + v3) is merely fundamental; compare with [31,
Chap. I]. A routine verification shows that

Ciza = {(e1,€2,e3) € C|ea < es},
Cias+ = {(e1,e2,e3) € C|es < ea < es + minfer,es}, 2e2 < e1 + 2es},
Cuse+ = {(e1,€2,e3) € C| ez < ez < e3+ minfer, ez}, e1 + 2e3 < 2es},
( )

Cyupo+ = {(e1,€2,€3) € C|er +e3 < ex < 2e3};
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hence the sets C134, Cia5+, Case+, Caga+ correspond precisely to Cases 1, 2a, 2b
and 3 in Lemma 5.5; compare with (5.21).

The following decompositions are easily verified:

(5.2 C=C134 UC 45+ UCys6+ UCygot, CO=CYs WECY o UC 4t UCy,
- C234="C34 U Cya+, C=0C"1Caa4.

For convenience, for a subset C;;;, € C write
Zigi(s) = Y X{'X52X50 (6o ()
e Ee”‘k

and adopt a similar shorthand notation for subsets of the form C;;j+, Cij, C;j+.
From (5.22) and (5.23) we deduce that

Zi100(5) = O XT XS X 0(e(m) +p7" > X X352 X50(Ee())
ecC ec@O

=1 +p HS XOAXE2XEB(Ee(n)) — p~ Zozals
(5.24) (L+p >Z P X5 X5 0 (Ea(m) — p Zasals)

=(1+p ") (Z134(s) + Z1as+ (8) + Zuser (5) + Zaga+(s))
— 0" (Z34(5) + Zao+ ().
LEMMA 5.10: Referring to Definition 5.1, we have

o0

1

Zh34(s) = - X, ;(le)iE,O(X2X3)a
Zus+(s) = | p3;§i()§i§}3 ioo(le)iFi70(X2X3),
Zyse+(8) = 1_ pg;%X§X3 i(pleXz)iFg,i(X2X3)v
Zygo+(s) = ) X%X)Qg?}(g 2<p_1X1X2)i F§i(X2X3),
Z34(s) = 1 ]193X3 Fo0(X2X3),
Zyo+(s) X3 Xs Fo0(X2X3).

T 1- X2X;



Vol. 269, 2025 PRO-ISOMORPHIC ZETA FUNCTIONS 671

Proof. The description appearing immediately after (5.21) provides explicit
formulae for 9(£e(7)) in each of the Cases 1, 2a, 2b and 3 which, by Re-
mark 5.9, correspond to the subcones Cys4, C145+, Ca56+ and Cygo+ respectively.
The sets C34 and Cyo+ correspond to parts of Cases 1 and 3 respectively. The
calculations are all similar; we show one of them. Elements of e € G134 can be

expressed in the form e = ryvy + r3vs 4+ r4vy, where 71,73, 74 € Ny, so that
e = (e1,e2,e3) =r1vy + r3vy +ravy = (r1, 74,73 + r4).

From this we obtain

Z34(s) = Z X Xy X5° V(e (T))

ecCi3q

Z X1€1X§2X363 p€1—362+3€3 f(el’ 0, 62)

ecCi3q
= > (X)) (0P Xs)™ (X2 X3)™ f(r1,0,74)
T1,73,742>0
- 1
S 1-p3Xs

o0

> (pX1)' Fio(X2X3).
i=0

Explicit formulae for the expressions in Lemma 5.10 can now be obtained via
Proposition 5.2 and Lemma 5.4. Substituting these into (5.24) yields

21,0,0.0(5)
_ (1 —-pX2Xs3)
(5.25) (1=pX1)(1—p3X5)(1 - X3 X3)(1-p? X2 X3)(1 - p X7 X5 X3)
X (—p'XTX53X3 — PP X7 X3 X
—p" X7 X3 X5 —pX{X3X5+p° X1 Xo X+ X1 +pXoX5+1).

Recalling that X; = p'475%, Xy = p®~%, X3 = p?679% we obtain
(1 _ 29—-10s

Clé\s,l)(s): _ 15—5s _ »29—-9s _ 13)0—115) _ m30—10s _ 61—21s
: (1-p (1 —p )1 —p )J(1—p )1 —p )

% (_p104—365_p90—315_p75—26s_p59—215+p45—155+p29—105+p14—55+1)
(1 _ p29—105)
(]_ _ p1575s)2(1 _ p29795)(1 _ pBOflls)(l _ p617213)

X(_p89731s_p757265+p747265_p597215+p3071Os_p1575s+p14755+1),

proving Theorem 1.3.
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6. Meromorphic continuation for the pro-isomorphic zeta function
Of FtS

In this section we consider the pro-isomorphic zeta function of the D*-group
I' =T'4s of Hirsch length 8, defined in (1.3). Our task is to deduce the assertions
about ({(s) in Corollary 1.4 from the Euler product decomposition (1.1) and
the explicit description of the local zeta functions in Theorem 1.3. The main
step is to establish that the line {s € C | Re(s) = 3} is a natural boundary
for the meromorphic continuation of ({(s). We follow the strategy laid out
in [15, Chap. 5] and use a compatible notation; in the terminology of [15], we
are dealing with a Type II situation, which requires approximations up to terms
of degree 3, as we shall see.

Theorem 1.3 shows that

(55 — 15)2¢(9s — 29)¢(11s — 30)¢(21s — 61)

¢(10s — 29) ¥ls),

(6.1)  (r(s) =
where ((s) denotes the Riemann zeta function and

(6.2) OES | L)

for
W(X Y) _ 1+X14Y57X15Y5+X30Y107X59Y21+X74Y267X75Y267X89Y31

as in the statement of Corollary 1.4. It is routine to check that the infinite
product in (6.2) converges absolutely for all s € C with

Re(s) > max{15/5,16/5,31/10,60/21,75/26,76/26,90/31} = 16/5

and yields a holomorphic function on {s € C | Re(s) > 16/5}. In passing, we
observe that the abscissa of convergence of the Dirichlet generating series (A (s),
which has non-negative coefficients, can be detected by looking for the right-
most singularity on the real line; from (6.1) we see that this singularity lies
at s =30/9 = 10/3 and yields a simple pole.

Next we show that the function ¢(s), and thus ¢/ (s), can be meromorphically
continued further to the right-half plane H = {s € C | Re(s) > 3}. Indeed,
the cyclotomic polynomial 1 — ¢ + ¢> does not vanish at ¢t = p'®=> for s € I,
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because [p'5~5%| < 1. We consider

i/;( ) _ H W(pap_s)
=y pisoss y p30-10s
(6'3) ' 14—5s 59—21s 74—265 75—26s 89—31s
_ ]._.[ (1 T p -p +p -p —-p )
. 1— p15—5s +p30—105 ’

this infinite product converges absolutely and yields a holomorphic function
for s € H, because

max{15/5,60/21,75/26,76,/26,90/31} = 3.
As1—t+t2=(1—-t5)(1—t)(1 —t3)"1(1 —t3)71, we see that

¢(10s — 30)¢(15s — 45) ~
¢(30s — 90)( (55 — 15) U(s), forse XK,

yields the desired meromorphic continuation. Furthermore, using a Tauberian

P(s) =

theorem [12, Thm. 4.20] as in the proof of Corollary 1.2, we obtain the descrip-
tion of the asymptotic growth of pro-isomorphic subgroups in I';s as recorded
in Remark 1.5.

It remains to show that the line L = {s € C | Re(s) = 3} is a natural
boundary for ¢(s); in view of (6.1), this implies that £ is also a natural bound-
ary for ¢{(s) and Corollary 1.4 follows. The strategy is to show that each
point s € L is a limit point of zeros of the meromorphic function ¥(s), de-
fined on J{; since poles and zeros of the Riemann zeta function are isolated, it
suffices to show that each s € £ is a limit point of zeros of the holomorphic
function t)(s), defined on H. Recall from (6.3) that t(s) is given as an infinite
product, indexed by p; thus J(S) vanishes, for any given s € H, if and only
if W(p,p’s) vanishes for at least one prime p.

This leads us to study the zeros of the polynomial

FV,U) =14+ (V-1U° + U™ - ViU + (v* - V3)U?* - viU3 e zZ|V][U].

Observe that F(X~1, X3Y) = W(X,Y); we will be interested in evaluating F
at V = p~! = 0, as the prime p tends to infinity, and U = p>~*, for suit-
able s € H depending on p. We see that

FO,U)=1-U>4+U"Y

is a product of the 6th and the 30th cyclotomic polynomial. We fix the primi-
tive 6th root of unity A = exp(mi/3) = (14++/37)/2 so that \ is a root of 1—t-+t2,
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and we fix the primitive 30th root of unity w = exp(wi/15) so that w is a root of
F(0,U). By the Holomorphic Implicit Function Theorem, there is a holomor-
phic function u = u(v), defined in a small complex neighbourhood of v = 0, such
that u(0) = w and F(v,u(v)) = 0; furthermore, being analytic, this function
admits a local representation as a power series

u(v) =w (1 + a1v + asv® + azv® + - -)

in v with uniquely determined complex coefficients. A routine power series
calculation and comparison of coefficients yield

1 1 1 . ;
ar = __(2A—=1), a9 = 152 = 153(717—450w+49w + 225w°).

15
Writing u(v) = p and v = p~!, for sufficiently large p, we solve for s € C to

(1-5X), as
3—s

obtain a set

Np:f]{ﬁ{?)—log(w) log(l+aip™ +ap? +agp®+---) 27k il kGZ}
log(p) log(p) log(p)
NN ~ z N
€Ri (*) €Ri

of zeros of ¥ (s), where k is a parameter that we can use, for increasing p, to

approximate any given point on the line £ to any required degree. However, we

still need to verify that, for sufficiently large p, the real part of the numerator

in (x) is negative so that the resulting candidate zero lies in H, as required.
Using the logarithm series

1

3

for small t = ay1p~ ! 4 aop~2 + azp~3 + - - -, we see that the relevant numerator

1
log(1+t):t—2t2+ 3 —

in (x) is

_ 1 _ 1 _ _
(6.4) p 1+(a2* 2af)p 2+(a3*a1a2+3a13)p S+ Q(p,

~ ~ ~ ~

~ ~
€Rs has negative real part

€Ri

where 2(v) is a complex power series in v starting with v* or some higher term.
Indeed, short calculations yield

1 1 ) . 1 5 1 /5 -1 . .
= (A-1)=  V3i€Ri and a— o= (275/\) = o V3icRi.
Furthermore, a slightly longer, but routine calculation gives

1 1
as—ajas+ _ad = . (—=25+50\+ 153\ —2)w)

1 5 6
3 153 (—1—18w+2w” +9w”)

135
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and, since Re(w) > Re(w®) > Re(w®), we deduce that
1
Re (ag —ajas + 3@13) <0

as asserted. For sufficiently large p, the contribution of Q(p~!) in (6.4) is much
smaller than the p~3-term; hence N,, supplies the required zeros of ().

7. Base extensions

Following a suggestion of the referee, we extend in this section our results for
the Q-indecomposable D*-groups I';2 and I';s to two infinite families of class-
two nilpotent groups that result naturally from the initial groups via ‘base
extensions’ of the corresponding Lie lattices; for completeness, we also discuss
what happens if we start with the decomposable D*-group I';. The outcome
illustrates that the investigation in [8], which was carried out partly after, partly
in parallel to our original work, has an impact in the situation that we consider
in this paper. We exercise some care not to exclude any primes; this allows
us to get explicit results in the global setting. In a nutshell we will see that
the calculations carried out in Sections 4 and 5 require only mild modifications,
once the relevant algebraic automorphism groups are understood. In particular,
we establish Theorem 1.6.

We briefly set up the scene. Let L be a nilpotent Z-Lie lattice; our main
interest will be in L = L=, the Lie lattice associated to the nilpotent group I'ym
with presentation (1.3), with an extra focus on m € {2,3}. We consider a
number field k of absolute degree d = [k : Q], with ring of integers o. By
extension of scalars from Z to o and restriction of scalars back to Z, we obtain
a Z-Lie lattice L = z,0L of Z-rank dimz(L) = ddimz(L). Clearly, L is nilpotent,
of the same class as L.

Automorphisms of L induce in a natural way automorphisms of Z, but, in
general, the automorphism group of L may turn out considerably more ‘com-
plex’ than that of L. Consequently, the pro-isomorphic zeta functions of L and
of L may bear little resemblance to one another. Our aim in this section is
to show that Lie lattices of the form L = L;m, for m € N>,, are sufficiently
‘rigid’ so that Aut(L) is strongly linked to Aut(L), in an appropriate local
sense. For m € {2,3}, this allows us to determine the local pro-isomorphic zeta
functions C/Z\,p(s) = CIZS;)(S) for all primes p and, via the Euler product (1.1),

we deduce analytic properties of the pro-isomorphic zeta function (?(s) of the
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class-two nilpotent group I associated to Z; compare with Section 3.1. The Lie
lattice Ly is not quite ‘rigid’, but a slight modification of the approach in [8] al-
lows us to bypass the problem and we obtain the local and global pro-isomorphic
zeta functions also in this basic case.

7.1. LOCAL RIGIDITY OF THE LIE LATTICES L;» FOR m > 2. As above, let
L= 7,0L denote the Z-Lie lattice associated, via ‘base extension’, to a Z-Lie
lattice L and a number field k& with ring of integers 0. Fix a rational prime p,
and recall that there are finitely many non-archimedean primes p € Spec(o)
dividing p. It is well known that there is a natural ring isomorphism

ZPOZZP X7z OEJH 0p,
plp
where o, denotes the completlon of o at the prime p. From this one sees
that the Z,-Lie lattice Lp = 7y ®z L relevant to our investigation, is iso-
morphic to @p‘p Lp, where Lp = 7,0, Lp denotes the Z,-Lie lattice that results
from L, = Z, ®z L via extension of scalars to the complete valuation ring o,
and restriction back to Z,.

This prompts us to consider the Z,-Lie lattice Zp = 7,,0Lyp, for any given fi-
nite extension JF of Q,, with valuation ring © and valuation ideal p.
Write ég,_, = Aut(zp) and G, = Aut(L,) for the algebraic automorphism
groups of the Z,-Lie lattices Eg,_, and L,. Here G, is simply the Z,-group
scheme that results from the algebraic automorphism group G = Aut(L) of
the original Z-Lie lattice via base change: any Z-basis & of L naturally iden-
tifies a Zp-basis of L,, and via § we realise G, < GL,, as an affine Z,-group
scheme, for n = dimz(L) = dimgz,(L,). In the following we write G in place
of G,, when the base ring is insignificant. Moreover, tensoring 8 with a Z,-
basis of 0, we obtain a Z,-basis S of Z@, which allows us to realise ép < Gl,g
as an affine Z,-group scheme, where d = dimgz,(0) = [F : Qp]. Our explicit
construction yields, in particular,

G(0) = Aut(oL,) < Aut(z,,0Ly) = Gy (Zy),
G(F) = Aut(5Ly) < Aut(g, 7Lp) = Gy, (Q,).

Typically, these embeddings are proper, because Z,-linear automorphisms are
not necessarily o-linear. Suppose that L, hence also L,, is nilpotent of class 2.
In this situation we can easily make out two types of automorphisms, which
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could be used to fill this gap: central automorphisms and field automorphisms.

More precisely, we set
J, = Cq (Ly/Z(Ly)) = ker(Aut(Ly) — Aut(Ly/Z(Ly))) < Gy,

the affine Z,-group scheme which is the algebraic centraliser of the Z,-module
Zp/Z(Zp). For the concrete realisation as a subgroup scheme in GL,q, it is
convenient to choose the underlying Z,-basis § in such a way that it includes a
Z,-basis for Z(L,); then $ includes a Z,-basis for Z(Z@) and J, can be defined
rather directly. In addition, we consider the algebraic automorphism group of
the extension F | Q, as a subgroup scheme of Aut(zp), that is the finite group
scheme

F, <G, withF, >~ Aut(o|Z,) = Aut(F|Q,)
such that, in particular, F,(Z,) = Aut(o |Z,) = Aut(F| Q,) acts naturally via
field automorphisms on the Lie lattice Ep. Furthermore, we observe that G,
now regarded as an affine o-group scheme, serves as the algebraic automor-
phism group Aut(,L,) of the o-Lie lattice o, Lp; accordingly, the affine Z,-group
scheme Res,, |z, (G) which results via restriction of scalars can be realised as a
subgroup scheme of (NS}K,. We are interested in situations where the following
‘rigidity’ holds:
(7.1) (Jp-Resyz,(G)) > F,=G, as Q,-defined algebraic subgroups of GL,q.
Actually, for us it suffices that the two group schemes yield the same groups
of Qp-rational points; this condition is slightly weaker, but implies, for in-
stance, that the two (Q,-algebraic groups have the same connected compo-
nent. In down-to-earth terms we require that the J- and thus also Qp-Lie
algebra £ = gLy, = F ®z, L, satisfies

(7.2) (CAut@p@)(Z JZ(L)) Autg (L)) x Aut(F|Q,) = Autg, (£).

In [8], Berman, Glazer and Schein extend results of Segal [30] for algebraic
automorphism groups of certain Lie algebras, with a view toward studying pro-
isomorphic zeta functions under ‘base extensions’. In particular, they formulate
sufficient conditions under which (7.1) holds true; see [8, Thm. 3.9]. For the dis-
cussion at hand, a special and thus simpler version of their criterion is sufficient.
We say that the Q,-Lie algebra g, L = g, L, is absolutely indecomposable
if, for every finite extension J of ), the J-Lie algebra 5L = 5L, is indecom-
posable. We make use of the following special instance of [8, Thm. 3.9].
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LEMMA 7.1: Let L be a class-two nilpotent Z-Lie lattice, as above, and such
that [L,L] = Z(L). Let p be a prime such that the Q,-Lie algebra £ = q, L, is
absolutely indecomposable and generated by

Y={wel~NZ(L)|Ce(Crslw)) = Qu+Z(L)}.

Then (7.1) holds, for every finite extension F of Qp, with valuation ring o and
valuation ideal g.

Next we consider the Z-Lie lattices Lym, m € N, associated to the D*-groups
I'ym with presentation (1.3). This means that L;m has Z-rank 2m+2 and admits
the presentation

Ltm :<1‘17 s my Y1y -y Yms 215, 22 |
(@i, y;] = i j21 + Oiy1,j22,
(7.3) j J J
(@i, 23] = [yi, 5] = [T, 21]) = [%4, 22] = [Yi> 21] = [Yi> 22] =0

for 1<i,5<m),

a special instance of (2.2). Furthermore, Z(L) = Zz1 + Zz2, and [L, L] = Z(L)
for m > 2.

LEMMA 7.2: Let L = Lym with m > 2, and let F be any field. Then the F-Lie
algebra £ = 5L is indecomposable.

Proof. Put Z = Z(L) = spang{z1, 22}. A routine check shows that

W ={w € £ | dimg(spans{[w,v] | v e L}) < 1}

7.4
(7.4) ={w € L | spang{[w,v] | v € L} C Fz1} = spang{zm,y1} + Z

so that W is a vector subspace and dimg (W) = 4. For a contradiction, suppose
that L = A @ B for non-zero Lie ideals A, B < L. Since A is nilpotent, A has
non-zero centre Z(A) # {0}, and likewise Z(B) # {0}. Thus Z = Z(A) @ Z(B)
implies dimgs(Z(A)) = dimg(Z(B)) = 1. We deduce that A UB C W and
hence W = £, in contradiction to dimg(£) = 2m + 2 > 4.

We remark that, in contrast to the situation treated in Lemma 7.2, the Lie
lattice L is already decomposable over Z: clearly, Ly = (Zx1 +Zy1 +Zz1) ©Zzo
decomposes as a direct sum of two non-zero Lie ideals.
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LEMMA 7.3: Let L = Lym with m > 2, and let F be any field. Then the F-Lie
algebra L = 5L is generated by

Y={w e LNZ(L) | C(Cr(w)) =Fw+Z(L)}
if and only if m # 2.

Proof. For short we put Z = Z(£) = [£, L] = spang{z1, 22}.

First consider the special case m = 2. We claim that Y is contained in
the proper Lie subalgebra W = spang{xa,y1} + Z; thus Y fails to generate L.
Indeed, from the description (7.4) and the definition of Y we see that both W
and Y are Aut(L)-invariant. Thus it suffices to check that z; ¢ Y and that
for every w € L \'W there exists g € Aut(£) such that wg = z;. From
Cg(x1) = spang{x1, z2} + Z we deduce that C;(Cg(z1)) = spang{z1,z2} +Z,
and this gives 21 ¢ Y. Now let w € L~'W. Corollary 2.7 describes the reductive
part of Aut(L); compare with (4.1). From this description we see that there
exists g1 € Aut(L) such that wg; € z1 + W. Finally, the description of the
unipotent radical of Aut(£) in Example 2.9 shows that there exists go € Aut(£)
such that wgi g2 = ;.

Now suppose that m > 3. We claim that Y contains the generating set

m m
L1y, T2y ooy Tm—25 Tmy Y1, Y3, Y4y - -5 Ym, E Zi, E Yi
=1 =1

for £. Indeed, for i € {1,...,m} it is easily checked that
CL(Z’l) = Spa'nf}“{xla oy Ty Y1y e Yi—15 Y425 - - -y ym} + Z’a
CL(%) = Spanff{fl?l, sy Li—2, Tt 1y - oo Ty Y1y - - - ,ym} + 2.

For i # m — 1 this implies C;(Cz(z;)) = Fx; + Z, hence z; € Y. Likewise
y; € Y for i # 2, but it can be seen that x,,_1,y2 do not belong to Y. In order
to bypass these exceptions, it suffices to show that Y ;" x; and Y ;" y; liein Y.
We deduce from

m
CL(le) :Spa'nff{wla"'axmay2 —Y3,Ys — Y4,y Ym—1 _ym} +Z’

cefea($50)) -($50) +=

i=1

that

This gives Y /", x; € Y and similarly >, y; € Y.
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We remark that, for m = 1, the set Y € L = 5L; defined in Lemma 7.3
coincides with £ \ Z(£L) and thus generates £ for trivial reasons.

PROPOSITION 7.4: Let L = Lym with m > 2, and let p be a prime. Then (7.2)
holds for every finite extension J of Q.

Proof. For m > 2 we can use the criterion established in [8, Thm. 3.9]: the
stronger ‘rigidity condition’ (7.1) follows, for every finite extension F of Q,,
with valuation ring o and valuation ideal g, from Lemmata 7.1, 7.2 and 7.3.
For m = 2 we give a direct proof of (7.2), as follows.

Fix a finite extension F of Q, of degree d = [F : Q,] and pick a primitive
element « for the extension so that

:}-:QZD(OZ):Qp1+(@pa+...+@pad71'

The Qp-Lie algebra L= Q,,5L results from the 6-dimensional Qp-Lie algebra
L = Qp, ®z L with basis x1,x2,y1, Y2, 21, 22, subject to the relations indicated
in (7.3), via extension and restriction of scalars; we have dimg, (£) = 6d and £
admits a Q,-basis consisting of the elementary tensors

riod=dl@x;, yidd=al @y, zdd=dl®z, foric{l,2},;jc{0,...,d—1},

where we write the powers of « on the right so that they are visibly separated
from scalars coming from Q,,. Likewise we find it convenient in the calculations
below to treat £ formally as a (Qp, F)-bimodule. We put Z = Z(£) and recall
that

[£,L] = Z = spang {21, 22} = spanQp{ziaj |ie{1,2}, j€{0,...,d—1}}.
Furthermore, we observe that with
W = spang{z2,y1} + Z(£) = {w € £ | dimg|w, £] < 1}
(7.5) = spang {z207 |0 < j < d} U{yio’ |0 <j <d}+Z(L)
= {w € £ | dimg, [w, £] < d}

we obtain a chain of Autg, (£)-invariant J- and hence Q,-subspaces

(7.6) {0}CW,L]C2 C WCZL
. ~ d
:ZIEF

with dimg, [\7\7, Z] = d and dimg, W = 4d; compare with (7.4).
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Now consider an arbitrary automorphism ¢ € Autg, (E ). By means of a finite
number of basic reductions, we show that ¢ is contained in the subgroup that
appears on the left-hand side of (7.2).
STEP 1. By Proposition 2.4, the group Autg(Z) induces on Z = 22T + 21T the
group of all invertible upper triangular matrices; in particular, it acts transi-
tively on (21 F \ {0}) x ((22F 4+ 21F) \ 21F). In view of the p-invariance of z; F
and z2F + z1F in (7.6) we may thus suppose without loss of generality that ¢
fixes z; and z9:

z1p =21 and 29p = zs.

STEP 2. Next we focus on [W, L] = 2,F = spanQp{zlaj | 0 <j < d}, with the
aim to reduce to the situation where ¢ induces the identity on this subspace.
In view of (7.6) we may write

(z10?) = z1\; for suitable \; € F, 0 < j < d.

Due to the reduction in Step 1 we have \g = 1, and A; is actually deter-

mined by Ao, ..., A\g_1, because a?

of a®,...,a%71; in (7.7) below it becomes clear why our analysis includes \g.

can be expressed as a Qp-linear combination

Furthermore, for 0 < j < d, the images of 10/ and ;07 € W under ¢ can be
written, modulo Z, as F-linear combinations

(z107)p =5 w105 + yo2bj + xpa} +y1b;  and (y10?)p =5 ac; + y1d;.
For 0 < j < d we deduce that

0= [z1, 2107 )¢ = [w100 + Y2bo + -+ ,T10j + Y2bj + -] =15 22(aob; — boay)
so that agb; = a;jbo. In a similar way, for 0 < j < d and 0 <7 < min{1,j} we
see that
21 = (z107)p = [1107 7" y10']
= [z1a5—; + Y2bj—i + ..., x2¢; + y1d;] = z1(a;—id; — bj_ic;)
so that A\j = a;_;d; — bj_;c;. Using bpaj—1 = agb;—1 to modify the underlined
terms and A\g = 1 for the final simplification, we deduce that for 1 < j <d,
AlAj,1 = (a0d1 — bocl)(aj,1d0 — bjflco)

= agdiaj_1do — bocra;_1dg — agd1bj_1co + bocibj_1co

= aodo(aj_ldl — bj_lcl) — boCo(aj_ldl — bj_lcl)

= (aodo — boCO)Aj = >‘0/\j = Aj.
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By induction, we obtain \; = A/ for 0 < j < d. Let f = Z;l:o it € Qplt]
denote the minimal polynomial of o over Q,. Then

(7.7) 0=(a1f(a ij (2100 ij (2125) zl(ZfJ )zlfm

implies f(A1) = 0. Hence o and A; are Galois conjugates in F=Q,,(a) =Q,(A1).
Modifying ¢ by a field automorphism, i.e., an element of Aut(F|Q,), we may
suppose without loss of generality that

(zlaj)gp =z for0<j<d

STEP 3. Next we focus on the action of ¢ on z:zlff"—i—zQ.’f modulo [W, E] =0T
this factor space admits 2007, 0 < j < d, as a Q,-basis. In view of (7.6) we
may write

(2207) =,,5 22p; for suitable yu; € F, 0 < j < d;

our aim is to show that p; = 87, with 8 = iy Galois conjugate to a.

Due to the reduction in Step 1 we have pg = 1, and g4 is actually determined
by po,...,Hd—1; compare with Step 2. For 0 < j < d, the images of z;a/
and y207 under ¢ can be written, modulo Z, as J-linear combinations

(2107 )p =5 r1a;+y2bj+raai+yb;  and (y2c)p =5 r1¢i+y2di+rac iy d;.
In Step 2 we saw that apb; = a;by for 0 < j < d. Furthermore, for 0 < j <d
and 0 < i <min{l,j} we get, modulo 21 F,
zaty =25 (2207)p = [21077 g2l
= [v1aji +y2bj—i + -+ 216+ yadi + -] =25 22(ajids — bj_ic;)
J j J j
so that p; = aj_;d; — bj_;jc;. A similar argument as in Step 2 shows that
wij = pi for 0 < j < d and that o and 8 = p; are Galois conjugates
in F=Qp(a) = Q).
STEP 4. We analyse further the action of ¢ on 2 = 21F + 22F. So far we have
reduced to the situation in which ¢ acts as the identity on z;F and

(zzaj)go =2 + zv; for1<j<d,

where 3 denotes a Galois conjugate of o and 0 = vy, v1,...,vq € F are suitable
coefficients. As before, v4 is actually determined by the previous parameters.
Proposition 2.6 describes the pointwise stabiliser of Z(£) inside Auts(L); a short
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reflection reveals that this stabiliser acts transitively on LW and consequently
we may suppose without loss of generality that

T1p = T1;
in particular, the abelian Lie subalgebra
X = Cz(m1) = Cz (21T + 22F) = spang{w1, 22, 21, 22}
is p-invariant. For 0 < 5 < d we deduce from
[21, (y207 )] = [21, 9207 ]¢p = (2207 )p = 2267 + 21
that, modulo f)vC,
(y20?)p =5 v+ Y287

in particular, y2¢ = yo modulo X. Furthermore, (r109)p € X and

[(z107)p, 2] = [(z107) 0, y200] = [w107, yo]p = (2207 )p = 2287 + 2105

yield, modulo Z,
(2107 )p =5 2187 + 321

For 0 < j < d we deduce from

2287 + 21 (B 1 + Bry) = [1187 + 2oy, yav1 + yo 8] = [T107, y20]p

= (2207 = 2287 + 21vj40
that vj11 = Bv; + B11. By recursion, this gives
v; =y for0<j<d.

Let f = Zj:o fit? € Q,[t] denote the minimal polynomial of a and of its
conjugate 3 over Q,. Then

d d d
0= (22 fla))p = <Z fj(Zzoéj)>90 =3 Fillz20?)p) = > fj (28 + 211)
> J=0 j=0 j=0
d
=Y fi(zf + 20 ) = 2 f () +2(f' () = 2101 f'(5))
=0 ~ %

implies v; = 0, hence v; =0 for 0 < j < d and

(20 )p = 2037 for 0 < j < d.
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STEP 5. Finally, let us see how ¢ acts modulo the centre. In Step 4 we saw
that yap = yo modulo X. Proposition 2.6 describes the pointwise stabiliser
of Z inside Autg( ); in particular, this stabiliser acts transitively on yo + DC
even if we add the condition that z; is to remain fixed: in the notation of the
proposition, we can take

c1 co 0

1
X1= < (1)> and Xo= <0 O) ,  where ¢1,co € F are free parameters.

Thus we may suppose, without interfering with the previous reductions, that ¢
fixes yo, i.e.,
_ Y2 = Y2.
From Tap € X and [229, ya] = [z2, yo2]p = 21 = 21 we deduce that xep = 29
modulo Z. Recall that Y1 € W implies y1¢ € W moreover, ¢ fixes 1 | and z1.
Hence [z1,y1¢] = [71,y1]@ = 210 = 21 gives y1¢ = y1 modulo x2F + 2. From
[y10, y2] =[y1, y2Jo =0 we conclude that y1p=y; modulo Z. We have gained
Tap =3 T2 and gy =z y1.
Now let 0 < j < d. From
[21, (y107)¢] = [21, 5107 ]p = (2107 )p = 210,
[y1, (y107)] = [y2, (y107) ] = 0
we see that (y10/)¢ =5 yiof. Similarly, [z1, (y207)¢] = (2207)¢ = 2247 and
[y1, (Y207 )] = [y2, (y20 )] = 0 imply (y207 ) =5 y237. Moreover
zia = (z10)p = [22, Y209 = [22, (y20) ] = [22,y28] = 218
implies o = .
In summary, this shows that ¢ fixes pointwise the centre Z, and that, mod-
ulo Z,
(1) =5 y1a?  and  (y207)p =5 yoo!, for 0 < j < d.
Finally, we observe that (z107)p, (z209)¢ € X satisfy

[(‘Tlaj%Oa Ya] = [zloéj, Yol = (Zzoéj)sﬁ = ZzOéj

and, by similar considerations, [(z2a7)p, 1] = 0 and [(z207)p, y2]e = z107.
From this we conclude that, modulo Z,

(z10?)p =5 210?  and (2207 )p =5 2207, for 0 < j <d.

As Z = Z(£) it follows that ¢ € C
on the left-hand side of (7.2).

Autg, (2) (L/Z(L)) is contained in the subgroup
P
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7.2. THE LOCAL PRO-ISOMORPHIC ZETA FUNCTIONS OF GROUPS f ASSOCI-
ATED TO L;2 AND L;s. We return to the setting described at the beginning of
the section. Let k be a number field of absolute degree d = [k : Q], with
ring of integers o. Let L = 7,0L be the nilpotent Z-Lie lattice associated
to Lym for m € {2,3} via ‘base extension’, with algebraic automorphism group
G = Aut(Z) < GLpg4, where n = dimg L = 2m+2, and let p be a prime. The ba-
sic ingredients for the ‘fine’ Euler decomposition established in [8, Prop. 3.14] are
the natural isomorphisms 7,0 = Z,®z0 =[], 0p and g,k = Q,®qk =[], , kp;
we summarise the technical steps and implications in our setting. We write H
for the reductive part of the 1-component G°. As described in Section 3.2, the
local zeta function associated to the Z,-Lie lattice Ep = Zpi can be expressed
as a p-adic integral

(78) Geo(e) = [ Idethl3 9o(h) 01 (1) g, (1)

where ﬁp :ﬁ(Qp), I;TJ: ﬁpﬂMnd(Zp) and Yo, ¥1: I:jp —R>¢ are suitable volume
functions, modulo a small technical issue to be taken care of: while G = Aut(L)
is connected (as we proved), the group G is typically not connected. But
in the presence of (7.1) or the somewhat weaker condition (7.2), which we
established in Section 7.1, the finite group scheme F 2 Aut(0|Z) = Aut(k|Q),
which potentially renders the group G non-connected, has the feature that
F(Z,) = F(Q,) and can thus be safely ignored, by using the same argument
as in the proof of [14, Prop. 2.1]. Moreover, the group ép = é(Qp) almost,
but not quite decomposes as a direct product indexed by the primes p | p. In
the reductive part I;Vp the troublesome central automorphisms disappear and
we have

H, = HHp with H, = H(k,) = ﬁp((@p) for each p | p,
plp

where H is the reductive part of the original group G and, setting
dp = dimgz, (0,) = [k LQP]’ we deilote by ﬁp the reductive part of t~he algebraic
automorphism group G, = Aut(L,) < GLyqg, of the Z,-Lie lattice L, = z, 0, L,
which we analysed in Section 7.1. The next step is to transform the integral
in (7.8) over ﬁz‘f into a product of integrals over H,” = H, N M,(0,) for p | p;
this essentially uses the natural isomorphism between locally compact groups
(Res,, |z, (H))(Qp) = H(ky), but one also needs to pay attention to the accom-
modation of central automorphisms.
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Modulo this small wrinkle, it is not difficult to carry out the analysis in
Section 3.2 for the local field k, in place of Q, to obtain

(79) o) =TT [ 1l ao(h) o1 )" s, (1),
plp Hy

where, for each p | p, the volume functions ¥y, ¥; are defined in analogy to
Section 3.2 (we refrain from adding the decoration ‘p’) and g7, denotes the right
Haar measure on H, with the normalisation pp, (Hy(0p)) = 1; compare with
the discussion in [8, §3], in particular with [8, Prop. 3.14]. It is worth pointing
out that on the right-hand side of (7.9) the exponent of ¥1(h) is d = [k : Q]
and not the corresponding local parameter dp; this feature results from the
treatment of central automorphisms and justifies that we consider the finite
product of integrals as one ‘package’.

It remains to carry out the explicit calculation of the integrals in (7.9) arising
from the concrete cases L = L2 and L = L;s. Consider first L = L;2. The
calculation of the integral in Section 4 carries over with little change. The only
material difference is that 91 (h) in the integrand is replaced by ¥1(h)?. The
intermediate integral (4.2) now takes the form

/ |d€t A|;1578d72 |V|p55712d de(A7 l/)
(A,v)EH, with
vp (A)20, vp (A)+vp (1) 20
where H, = H(k,) = GLa(ky) x GLi(ky) and the valuation map v, on ki
and on Ms(k,) replaces the p-adic valuation v, used previously. Due to the
dependence on d, we then obtain

190 (ge (ﬂ_)g) 9y (ge(ﬂ.)g)d _ qp(8d+2)€1+12d62+(4d+4)63,

where 7 now denotes a uniformising element for k,, that is vy(7) = 1, and
where g, denotes the residue field size of ky, that is g, = |o/p| = 7], . We
obtain the formula
i‘ 1 + q8d+2745
(L, (s) = H 4d+4-3s p8d+3—4s 12d—5s1 °
P blp (1*% )(1*% )(1*‘];3 )

This is the local pro- 1s0m0rphlc zeta function, at the prime p, of the class-two
nilpotent group I = th associated to L = Lt2 as described in Section 3.1. It
is straightforward to deduce Theorem 1.6 and the assertions in Remark 1.7.
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Finally we consider L = L;s. The calculation of the integral in Section 5 car-
ries over with little change. Indeed, the treatment there was already performed
so that it applies equally well to the more general situation. Again, the only
material difference is that ¥;(h) in the integrand is replaced by ¥;(h)?. The
intermediate integral (5.5) now takes the form

[ et (4, )) dpy(4,0)
(A,v)€H with
vp (A)20, vy (A)+vp ()20
where H, = H(k,) = GLa(ky) x GL;(k,) and the valuation map v, on k, and
on Ma(k,) replaces the p-adic valuation v, used previously. Due to the depen-
dence on d, we have V1 (£e(m)?)4 = g, 2415921843 "\where 1 is a uniformising
element for k, and where g, denotes the residue field size of k,. Equation (5.22)

becomes
—len(w el ve es q
Zp(s) = Zgr o p(s) = D @y DT XPXSXS D(Ee(r)),
weWw e € C with
e1>0 if w#l

where the numerical data is now
12d+2-5 6d—4— 18d+8—9
Xl = Qp + Sa X = qP Sa X qP + 5.

The remaining calculations go through unchanged: the analogue of equation
(5.25) yields the formula

(7.10) ¢=(s)=] | O )

12d+3—5 18d+11—9 30d—11 54d+7—21s\
e € O R [ e (B
where
90d+14—36 78d+12—31 66d+9—26 54d+5—21
V(S)__qp + S_Qp+ s_qp + s_qp + s
pls) = 1+gq 12d+3 5s
- . qg6d+9 15s+q24d+5—105+q12d+2—5s+1

1+q12d+3 5s

_ 12d+2—5s 12d+3—5s 24d+6—10s 54d+5—21s
=1+gq, =g +qy — gy
66d+8—26s 66d+9—26s 78d+11—31s
+ 4 4 4 :

This is the local pro- 1s0m0rphlc zeta function, at the prime p, of the class-two
nilpotent group r=r +3 associated to L= Lts as described in Section 3.1. We
formulate, in analogy to Theorem 1.6, a partial generalisation of Corollary 1.4.
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THEOREM 7.5: Let k be a number field of absolute degree d = [k : Q|, with ring
of integers 0. Let r= ftS, & be the class-two nilpotent group of Hirsch length 8d
and with rank-2d centre, corresponding to the class-two nilpotent Z-Lie lattice
L= zﬁ,k which results from the Lie lattice L = L;s via ‘base extension’ as
defined above.

Then the pro-isomorphic zeta function of the group T is

Ce(5s— (12d+3))2Ce (95— (18d+11)) (115 —30d) (215 — (54d+ 7))

k(105 — (24d + 5)) w(s),

Gf (s)=
where (i (s) denotes the Dedekind zeta function of k and

(7.12) w(s) =] Ve(s)
P

with the product running over all non-archimedean primes p of k and Vj(s)
defined as in (7.11).

Remark 7.6: For k = Q, i.e., d = 1, the description is in agreement with Corol-
lary 1.4; compare (6.1). Similar to the special situation covered in Section 6, it
is routine to check that the infinite product in (7.12) converges absolutely and
yields a holomorphic function on the half-plane consisting of all s € C with

12d+4 24d+7 54d+6 66d+ 10 78d+12}
5 7 10 ' 21 26 ' 31

12d+a i d e {1,2},

18dF2if d > 3.

Re(s) > max{

Consequently, for number fields k of absolute degree d > 3, the pro-isomorphic
zeta function of I' = ft3,k has abscissa of convergence (30d + 1)/11 and can be
meromorphically continued at least to {s € C | Re(s) > (18d+2)/7} with a sim-
ple pole at s = (30d+1)/11. For quadratic fields k, i.e., d = 2, there is an extra
twist, but a routine analysis shows that the pro-isomorphic zeta function has
abscissa of convergence 28/5 and can be meromorphically continued at least to
{s € C | Re(s) > 11/2} with a simple pole at s = 28/5. Similar to Remark 1.5,
the asymptotic growth of pro-isomorphic subgroups in [ can be described by
means of a suitable Tauberian theorem. Via the Euler product, the formula for
g? (s) incorporates the description (7.10) of the local pro-isomorphic zeta func-
tions Qlé\_’p(s) = g“i‘:(s) for all primes p and thus also yields a generalisation of
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Theorem 1.3. Indeed, for d = 2 the zeta function Clép(s) has abscissa of conver-
gence 115/21 and for d > 3 it has abscissa of convergence 30d/11. Whenever p
is unramified in k, the local zeta function satisfies the functional equation

2 —
$7p(8)|p%p*1 _ :|:p24d +8d—10ds gﬁp(s)-

7.3. THE LOCAL PRO-ISOMORPHIC ZETA FUNCTIONS OF GROUPS I' ASSOCIATED
TO L;. The Lie lattice L = L; is decomposable and does not quite fit into the
same drawer as the lattices Lym, m > 2. For completeness we indicate how the
approach in [8] can be adapted in this and similar situtations to obtain the local
pro-isomorphic zeta functions of class-two nilpotent groups I associated to Lie
lattices L obtained from L via ‘base extension’.

We start our discussion more generally. Let L be any class-two nilpotent Z-Lie
lattice, and throughout let p denote a rational prime. Then [L, L] C Z(L) and
we can decompose L as a direct sum L = L° & M of Lie sublattices, where L°
satisfies [L°, L°] = Z(L°) = [L, L] and M C Z(L) is abelian. Typically there are
many choices for L° and M, but both are uniquely determined up to isomor-
phism. We set [ = dimz(L°/[L°, L°]), m = dimz(M) and n = dimz([L°, L°]).
The algebraic automorphism group Aut(L°) can be realised as a subgroup
scheme G < GL;,, via a Z-basis 8° = (1,...,,21,...,2,) for L° consisting
of a basis x1,...,2; for a complement of [L°, L°] in L° and a basis z1,...,2,
for [L°, L°]. Similarly we view Aut(L) as a subgroup scheme of GL; 4, via
the extended Z-basis

S = (1) s T YLy s Yms Z1s -« 5 Zn)s

where y1,...,ym form a basis for M.

There are polynomial conditions, which we will denote by (), and a polyno-
mial map f from GL; to GL,,, which can be made explicit in terms of the struc-
ture constants of the Lie lattice L°, such that automorphisms of the Q,-Lie alge-
bra g, L° = Q,®z L°, viewed as elements of the group G, = G(Q,) <GL;11,(Qy),
take the form

A o« '
(7.13) ( F(A) ) , where A € GL;(Q,) satisfies ()

and * is a placeholder for arbitrary entries.
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Moreover, automorphisms of g, L =Q,®zL, viewed as elements of GL 1 (Qp),
take the form

A x *
B % , where A € GL;(Q,) satisfies (}),
(7.14) f(A) B € GL,,(Q,) has no particular restrictions

and * is a placeholder for arbitrary entries.

We set ,L° = Z, @z L° and ,L = Z, ®z L. As described in Section 3.2, the
local zeta function (p. ,(s) = is2(s) is under suitable assumptions given by an
integral
(7.15) F2(e) = [ Idet bl 0o(0) 01 () ds, (1)

HP

over Hf = H, N M;1n(Zy), where H,, denotes the reductive part of G,
and ¥g, Y1 : H, — R>¢ are suitable volume functions. The descriptions in (7.13)
and (7.14) provide a close link between the groups of Q,-points of the algebraic
automorphism groups of L° and L; for instance, the reductive parts are H,
and H, x GL,,(Q,), up to isomorphism. Utilizing this connection, we obtain
for the local zeta function (7 (s) = ‘f;’ (s) the integral formula

Co(s) = / (det AL o (k) 91 ()™ dpugg (h)
P + P
(7.16) H
X / |det g5 dpcL,. @) (9);

GLyn (Qp) T

in analogy to (7.9); the first factor is a mild modification of the integral in (7.15)
and accomodates for the extra middle block in the third column of (7.14), the
second factor accommodates for the extra blocks in the middle column in (7.14).

The second factor in (7.16) is well-known and easy to compute; one gets

/GL © )Jdet 9|;_l due,,.(,)(9) = H(l _ plt+i=D=s)-1,
m P

j=1
Example 7.7: Let L = L° & M, where

L° =Zx1 & Lo & L2y
with [x1,x2] = 21 denotes the Heisenberg Lie lattice and

M:éZyi§Zm

i=1
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is abelian. Then (I,n) = (2,1) and
H, = {diag(A,det A) | A € GL2(Qp)} < GL3(Q,),

furthermore 9o(h) = 1 and 91 (h) = |det A|? for h = diag(A,det A) € H, in
the above approach; consequently, we obtain

Cso( ) / |detA|25 m— 2dﬂGL @) (J+1) s
GLa(@p)* o JI;[

=(1- p(m+2)725)71(1 (m+3 H (J+1) %)

in agreement with the calculation in [3, §3.3.4]. The pro-isomorphic zeta func-
tion of the corresponding group I' 2 Heis(Z) x C” is a product of shifted

Riemann zeta functions.

In a situation where L° satisfies rigidity conditions of the kind described
in Section 7.1 the approach discussed in Section 7.2 can easily be adapted to
yield a formula for the local zeta functions C/Z\,p(s) = Cizso(s) of Lie lattices L
obtained from L via ‘base extension’. As before let & be a number field of
absolute degree d = [k : Q], with ring of integers 0. We apply the method
and notation from Section 7.2 to L° in place of L. Let L= z,0L be the class-
two nilpotent Z-Lie lattice obtained by extending and restricting scalars. We
observe that L = L° & M is a suitable decomposition of L in the sense given
at the beginning of this section, with L° = L° satisfying [L°, L°] = [L,I]
and M C Z(L) abelian; furthermore, dimz(L°) = (I 4+ n)d and dimz(M ) md.
Combining the approaches taken in this and the previous section, we arrive at
the integral formula

cEo(s) (H/ |det A3 Do (h) 0y (b)) dqu(h)>

plp

x / det g3 d e o) (9)
GLina(Qp)t+

md
-(1I / et 90(A) 02 (0) ™ i, 1)) [T1-p057072) 2,

plp j=1

where Hy, H;r , Yo and Y7 (again without the decoration ‘p’) are defined as in
preparation for (7.9), but applied to L° instead of L.



692 M. N. BERMAN, B. KLOPSCH AND U. ONN Isr. J. Math.

Finally we apply the above considerations to L = L; = L° & M, where
=7Zx1 D Lxs ® 7Lz
with [x1,x2] = 21 is the Heisenberg Lie lattice and
M = Zy

is abelian of rank 1. In this case (I,m,n) = (2,1,1) and our general formula
specialises to
d

1so (H/ |detA|2s gdd,U/GLg(kp) ) H (2d+j 1)— 5)
plp 7t J=1
d
_ <H(1 7q§,d725)71(1 (3d+1) 2s > H 2d+j71)75)71,
plp j=1

where g, denotes the residue field size of k,. The pro-isomorphic zeta function
of the corresponding class-two nilpotent group I' is a product of two shifts of
the Dedekind zeta function of k and d shifted Riemann zeta functions.

THEOREM 7.8: Let k be a number field of absolute degree d = [k : Q], with ring
of integers 0. Let I = ftk be the class-two nilpotent group of Hirsch length 4d
and with rank-2d centre, corresponding to the class-two nilpotent Z-Lie lattice
L = Zt,k which results from the Lie lattice L = L; via ‘base extension’ as
defined above.

Then the pro-isomorphic zeta function of the group [ is

d
CA(s) = Gr(2s — 3d) Ge(2s — (3d+ 1)) - [ Cals — (2d+j — 1)),
j=1
where (j(s) denotes the Dedekind zeta function of k and (g(s) denotes the
Riemann zeta function; in particular, it admits meromorphic continuation to
the entire complex plane.

Remark 7.9: The abscissa of convergence of Clé(s) is 3d, with a single pole
at s = 3d. The asymptotic growth of pro-isomorphic subgroups in [ can be
described by means of a suitable Tauberian theorem. The local zeta func-
tion (~ ( ) has abscissa of convergence 3d — 1 and, if p is unramified in k, it
satlsﬁes the functional equation

.

2,1 _
. :|:p8d +5d(d+1) 5ds<ﬁ/\ (S)

(8)lpop—1 =
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